IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i1p389-d474569.html
   My bibliography  Save this article

Life Cycle Assessment of an Electric Chiller Integrated with a Large District Cooling Plant

Author

Listed:
  • Chima Cyril Hampo

    (Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia)

  • Ainul Bt Akmar

    (Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia)

  • Mohd Amin Abd Majid

    (Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia)

Abstract

District cooling (DC) systems have recently proven to be more economically and environmentally viable as compared to conventional cooling techniques. In most DC setups, electric centrifugal chillers (ECCs) are installed to provide chilled water (CW) to charge the thermal energy storage (TES) tank or for direct CW supply to the DC network. The operation of these ECC systems consumes most of the electrical power supplied to the entire DC plant; this therefore strengthens the need to conduct a comprehensive environmental assessment in order to quantify the indirect ecological impact resulting from the energy consumed in the ECC system operation. In order to achieve this, a case study was conducted of four ECC systems with a use-life of 25 years installed in a large DC plant in Malaysia. A gate-to-gate life cycle assessment (LCA) methodology was adopted to analyze the environmental performance of the system setup. The result of the study year reveals that April and June account for the highest and lowest environmental impact, respectively. The influence of climatic temperature conditions on the monthly cooling and environmental load distribution was also observed from the results. Finally, in substantiating the study’s investigation, environmental performance based on the composition of two different electricity fuel mixes is discussed and compared. The results revealed a drastic decrease in environmental load as the ratio of non-renewable energy sources decreased in the composition of the mix, thereby reducing the contribution of the overall environmental impact of the ECC systems’ use phase.

Suggested Citation

  • Chima Cyril Hampo & Ainul Bt Akmar & Mohd Amin Abd Majid, 2021. "Life Cycle Assessment of an Electric Chiller Integrated with a Large District Cooling Plant," Sustainability, MDPI, vol. 13(1), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:389-:d:474569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/389/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Catrini, P. & Cellura, M. & Guarino, F. & Panno, D. & Piacentino, A., 2018. "An integrated approach based on Life Cycle Assessment and Thermoeconomics: Application to a water-cooled chiller for an air conditioning plant," Energy, Elsevier, vol. 160(C), pages 72-86.
    2. Saidur, R. & Hasanuzzaman, M. & Mahlia, T.M.I. & Rahim, N.A. & Mohammed, H.A., 2011. "Chillers energy consumption, energy savings and emission analysis in an institutional buildings," Energy, Elsevier, vol. 36(8), pages 5233-5238.
    3. Saidur, R., 2009. "Energy consumption, energy savings, and emission analysis in Malaysian office buildings," Energy Policy, Elsevier, vol. 37(10), pages 4104-4113, October.
    4. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    5. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    6. Mukhtar, A. & Ng, K.C. & Yusoff, M.Z., 2018. "Passive thermal performance prediction and multi-objective optimization of naturally-ventilated underground shelter in Malaysia," Renewable Energy, Elsevier, vol. 123(C), pages 342-352.
    7. Mahlia, T.M.I, 2002. "Emissions from electricity generation in Malaysia," Renewable Energy, Elsevier, vol. 27(2), pages 293-300.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chima Cyril Hampo & Hamdan Haji Ya & Mohd Amin Abd Majid & Ainul Akmar Mokhtar & Ambagaha Hewage Dona Kalpani Rasangika & Musa Muhammed, 2021. "Life Cycle Assessment of a Vapor Compression Cooling System Integrated within a District Cooling Plant," Sustainability, MDPI, vol. 13(21), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chima Cyril Hampo & Hamdan Haji Ya & Mohd Amin Abd Majid & Ainul Akmar Mokhtar & Ambagaha Hewage Dona Kalpani Rasangika & Musa Muhammed, 2021. "Life Cycle Assessment of a Vapor Compression Cooling System Integrated within a District Cooling Plant," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    2. Habib, Mohammad Ahsan & Hasanuzzaman, M. & Hosenuzzaman, M. & Salman, Asif & Mehadi, Md Riyad, 2016. "Energy consumption, energy saving and emission reduction of a garment industrial building in Bangladesh," Energy, Elsevier, vol. 112(C), pages 91-100.
    3. Muthu Kumaran Gunasegaran & Md Hasanuzzaman & ChiaKwang Tan & Ab Halim Abu Bakar & Vignes Ponniah, 2022. "Energy Analysis, Building Energy Index and Energy Management Strategies for Fast-Food Restaurants in Malaysia," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    4. Zabala, Laura & Febres, Jesus & Sterling, Raymond & López, Susana & Keane, Marcus, 2020. "Virtual testbed for model predictive control development in district cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    5. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    6. Yingying Chen & Jian Zhu, 2019. "A Graph Theory-Based Method for Regional Integrated Energy Network Planning: A Case Study of a China–U.S. Low-Carbon Demonstration City," Energies, MDPI, vol. 12(23), pages 1-17, November.
    7. Habib Hussain Khan & Nahla Samargandi & Adeel Ahmed, 2021. "Economic development, energy consumption, and climate change: An empirical account from Malaysia," Natural Resources Forum, Blackwell Publishing, vol. 45(4), pages 397-423, November.
    8. Muthu Kumaran Gunasegaran & Md Hasanuzzaman & ChiaKwang Tan & Ab Halim Abu Bakar & Vignes Ponniah, 2023. "Energy Consumption, Energy Analysis, and Solar Energy Integration for Commercial Building Restaurants," Energies, MDPI, vol. 16(20), pages 1-26, October.
    9. Schüppler, Simon & Fleuchaus, Paul & Duchesne, Antoine & Blum, Philipp, 2022. "Cooling supply costs of a university campus," Energy, Elsevier, vol. 249(C).
    10. Saidur, R. & Hasanuzzaman, M. & Mahlia, T.M.I. & Rahim, N.A. & Mohammed, H.A., 2011. "Chillers energy consumption, energy savings and emission analysis in an institutional buildings," Energy, Elsevier, vol. 36(8), pages 5233-5238.
    11. Rabah Ismaen & Tarek Y. ElMekkawy & Shaligram Pokharel & Adel Elomri & Mohammed Al-Salem, 2022. "Solar Technology and District Cooling System in a Hot Climate Regions: Optimal Configuration and Technology Selection," Energies, MDPI, vol. 15(7), pages 1-24, April.
    12. Zhang, Wei & Hong, Wenpeng & Jin, Xu, 2022. "Research on performance and control strategy of multi-cold source district cooling system," Energy, Elsevier, vol. 239(PB).
    13. Saidur, R. & Hasanuzzaman, M. & Yogeswaran, S. & Mohammed, H.A. & Hossain, M.S., 2010. "An end-use energy analysis in a Malaysian public hospital," Energy, Elsevier, vol. 35(12), pages 4780-4785.
    14. Sabo, Mahmoud Lurwan & Mariun, Norman & Hizam, Hashim & Mohd Radzi, Mohd Amran & Zakaria, Azmi, 2017. "Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia," Applied Energy, Elsevier, vol. 191(C), pages 663-688.
    15. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    16. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    17. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    18. Fabien Marty & Sylvain Serra & Sabine Sochard & Jean-Michel Reneaume, 2019. "Exergy Analysis and Optimization of a Combined Heat and Power Geothermal Plant," Energies, MDPI, vol. 12(6), pages 1-22, March.
    19. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    20. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:389-:d:474569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.