IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2657-d787336.html
   My bibliography  Save this article

Solar Technology and District Cooling System in a Hot Climate Regions: Optimal Configuration and Technology Selection

Author

Listed:
  • Rabah Ismaen

    (Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar)

  • Tarek Y. ElMekkawy

    (Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar)

  • Shaligram Pokharel

    (Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar)

  • Adel Elomri

    (Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar)

  • Mohammed Al-Salem

    (Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar)

Abstract

With the increasing need for cooling and the concerns for pollution due to fossil fuel-based energy use, renewable energy is considered an add-on to cooling technologies. The climatic condition in the Middle East, analyzed in this paper, provides the potential to integrate solar energy with the cooling system. Due to the availability of various solar energy and cooling technologies, multiple configurations of solar-cooling systems can be considered to satisfy the cooling demand. The research presented in this paper aims to assess and compare these configurations by considering the energy prices and the installation area. The proposed model is formulated in Mixed-Integer Linear Programming and optimizes the holistic system design and operation. The economic, renewable energy use, and environmental performances of the optimal solution for each configuration are analyzed and compared to the base grid-DCS configuration. Results show that the electricity tariff and the available installation area impact the economic competitiveness of the solar energy integration. When electricity tariff is subsided (low), the conventional grid-based DCS is the most competitive. The PV-DCS configuration is economically competitive among the solar assisted cooling systems, and it can contribute to reducing the environmental impact by 58.3%. The PVT-DCS configuration has the lowest operation cost and the highest environmental performance by decreasing the global warming potential by 89.5%. The T-DCS configuration becomes economically competitive only at high electricity tariffs.

Suggested Citation

  • Rabah Ismaen & Tarek Y. ElMekkawy & Shaligram Pokharel & Adel Elomri & Mohammed Al-Salem, 2022. "Solar Technology and District Cooling System in a Hot Climate Regions: Optimal Configuration and Technology Selection," Energies, MDPI, vol. 15(7), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2657-:d:787336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Rakesh & Rosen, Marc A., 2011. "A critical review of photovoltaic–thermal solar collectors for air heating," Applied Energy, Elsevier, vol. 88(11), pages 3603-3614.
    2. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2016. "District cooling systems: Technology integration, system optimization, challenges and opportunities for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 253-264.
    3. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    4. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    5. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    6. Gang, Wenjie & Wang, Shengwei & Gao, Diance & Xiao, Fu, 2015. "Performance assessment of district cooling systems for a new development district at planning stage," Applied Energy, Elsevier, vol. 140(C), pages 33-43.
    7. Madalina Barbu & George Darie & Monica Siroux, 2020. "A Parametric Study of a Hybrid Photovoltaic Thermal (PVT) System Coupled with a Domestic Hot Water (DHW) Storage Tank," Energies, MDPI, vol. 13(24), pages 1-18, December.
    8. Moreno, A. & Chemisana, D. & Fernández, E.F., 2021. "Hybrid high-concentration photovoltaic-thermal solar systems for building applications," Applied Energy, Elsevier, vol. 304(C).
    9. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    10. Pakere, Ieva & Lauka, Dace & Blumberga, Dagnija, 2018. "Solar power and heat production via photovoltaic thermal panels for district heating and industrial plant," Energy, Elsevier, vol. 154(C), pages 424-432.
    11. Ismaen, Rabah & El Mekkawy, Tarek Y. & Pokharel, Shaligram & Al-Salem, Mohammed, 2022. "System requirements and optimization of multi-chillers district cooling plants," Energy, Elsevier, vol. 246(C).
    12. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    13. Saeed Alqaed & Jawed Mustafa & Kevin P. Hallinan & Rodwan Elhashmi, 2020. "Hybrid CHP/Geothermal Borehole System for Multi-Family Building in Heating Dominated Climates," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    14. Fahad Awjah Almehmadi & Kevin P. Hallinan & Rydge B. Mulford & Saeed A. Alqaed, 2020. "Technology to Address Food Deserts: Low Energy Corner Store Groceries with Integrated Agriculture Greenhouse," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanane Ait Lahoussine Ouali & Ahmed Alami Merrouni & Shahariar Chowdhury & Kuaanan Techato & Sittiporn Channumsin & Nasim Ullah, 2022. "Optimization and Techno-Economic Appraisal of Parabolic Trough Solar Power Plant under Different Scenarios: A Case Study of Morocco," Energies, MDPI, vol. 15(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zabala, Laura & Febres, Jesus & Sterling, Raymond & López, Susana & Keane, Marcus, 2020. "Virtual testbed for model predictive control development in district cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Gao, Cheng & Wang, Dan & Sun, Yuying & Wang, Wei & Zhang, Xiuyu, 2023. "Optimal load dispatch of multi-source looped district cooling systems based on energy and hydraulic performances," Energy, Elsevier, vol. 274(C).
    3. Zhang, Wei & Hong, Wenpeng & Jin, Xu, 2022. "Research on performance and control strategy of multi-cold source district cooling system," Energy, Elsevier, vol. 239(PB).
    4. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    5. Mika Fabricius & Daniel Øland Tarp & Thomas Wehl Rasmussen & Ahmad Arabkoohsar, 2020. "Utilization of Excess Production of Waste-Fired CHP Plants for District Cooling Supply, an Effective Solution for a Serious Challenge," Energies, MDPI, vol. 13(13), pages 1-21, June.
    6. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    7. Deng, Na & He, Guansong & Gao, Yuan & Yang, Bin & Zhao, Jun & He, Shunming & Tian, Xue, 2017. "Comparative analysis of optimal operation strategies for district heating and cooling system based on design and actual load," Applied Energy, Elsevier, vol. 205(C), pages 577-588.
    8. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Simon Pezzutto & Philippe Riviere & Lukas Kranzl & Andrea Zambito & Giulio Quaglini & Antonio Novelli & Marcus Hummel & Luigi Bottecchia & Eric Wilczynski, 2022. "Recent Advances in District Cooling Diffusion in the EU27+UK: An Assessment of the Market," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    10. Yan, Chengchu & Gang, Wenjie & Niu, Xiaofeng & Peng, Xujian & Wang, Shengwei, 2017. "Quantitative evaluation of the impact of building load characteristics on energy performance of district cooling systems," Applied Energy, Elsevier, vol. 205(C), pages 635-643.
    11. Ríos-Ocampo, J.P. & Olaya, Y. & Osorio, A. & Henao, D. & Smith, R. & Arango-Aramburo, S., 2022. "Thermal districts in Colombia: Developing a methodology to estimate the cooling potential demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    13. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    14. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.
    15. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    16. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    17. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    18. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Zareie, Zahra & Ahmadi, Rouhollah & Asadi, Mahdi, 2024. "A comprehensive numerical investigation of a branch-inspired channel in roll-bond type PVT system using design of experiments approach," Energy, Elsevier, vol. 286(C).
    20. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2657-:d:787336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.