IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2586-d245737.html
   My bibliography  Save this article

Optimal Configuration of Electric-Gas-Thermal Multi-Energy Storage System for Regional Integrated Energy System

Author

Listed:
  • Dongmei Zhao

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Xuan Xia

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Ran Tao

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

With the increasing attention of the clean and efficient use of energy, the regional integrated energy system (RIES), as an efficient measure to improve energy efficiency, is tending to play an important role in the field of energy supply. The configuration of multiple energy storage equipment in the RIES can greatly improve the economy of the system, which is an important research direction of RIES planning. However, at present the research on the configuration optimization of electric-gas-thermal multi-energy storage devices in RIES is insufficient. Under this background, a method for configuring the rated capacity and power of various energy storage devices in the RIES under both off-grid and grid-connected operating modes was proposed in this paper, and the configuration optimization model was also established. Firstly, the RIES was divided into four parts: Energy supply, energy conversion, energy storage and the load. Based on the energy hub concept, the four parts were modeled respectively. Secondly, considering the influence of electric energy substitution and operation strategy, the optimal configuration of multi-energy storage devices was modeled as a MILP formulation and solved with the Gurobi optimizer. Finally, a case study verified the effectiveness of the proposed model and the method. Furthermore, the sensitivity analysis was carried out to quantify the influence degree of each factor (such as price, etc.) on the energy storage configuration.

Suggested Citation

  • Dongmei Zhao & Xuan Xia & Ran Tao, 2019. "Optimal Configuration of Electric-Gas-Thermal Multi-Energy Storage System for Regional Integrated Energy System," Energies, MDPI, vol. 12(13), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2586-:d:245737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Tang & Gangfeng Gao & Xiangwu Xia & Xiu Yang, 2018. "Integrated Energy System Configuration Optimization for Multi-Zone Heat-Supply Network Interaction," Energies, MDPI, vol. 11(11), pages 1-18, November.
    2. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    3. Zhongfu Tan & Qingkun Tan & Shenbo Yang & Liwei Ju & Gejirifu De, 2018. "A Robust Scheduling Optimization Model for an Integrated Energy System with P2G Based on Improved CVaR," Energies, MDPI, vol. 11(12), pages 1-15, December.
    4. Hengrui Ma & Bo Wang & Wenzhong Gao & Dichen Liu & Yong Sun & Zhijun Liu, 2018. "Optimal Scheduling of an Regional Integrated Energy System with Energy Storage Systems for Service Regulation," Energies, MDPI, vol. 11(1), pages 1-19, January.
    5. Yongjie Zhong & Dongliang Xie & Suwei Zhai & Yonghui Sun, 2018. "Day-Ahead Hierarchical Steady State Optimal Operation for Integrated Energy System Based on Energy Hub," Energies, MDPI, vol. 11(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianwei Gao & Yu Yang & Fangjie Gao & Haoyu Wu, 2022. "Two-Stage Robust Economic Dispatch of Regional Integrated Energy System Considering Source-Load Uncertainty Based on Carbon Neutral Vision," Energies, MDPI, vol. 15(4), pages 1-16, February.
    2. Yingying Chen & Jian Zhu, 2019. "A Graph Theory-Based Method for Regional Integrated Energy Network Planning: A Case Study of a China–U.S. Low-Carbon Demonstration City," Energies, MDPI, vol. 12(23), pages 1-17, November.
    3. Chengyu Zeng & Yuechun Jiang & Yuqing Liu & Zuoyun Tan & Zhongnan He & Shuhong Wu, 2019. "Optimal Dispatch of Integrated Energy System Considering Energy Hub Technology and Multi-Agent Interest Balance," Energies, MDPI, vol. 12(16), pages 1-17, August.
    4. Haokai Xie & Pu Zhao & Xudong Ji & Qun Lin & Lianguang Liu, 2019. "Expansion Planning Method of the Industrial Park Integrated Energy System Considering Regret Aversion," Energies, MDPI, vol. 12(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongjie Zhong & Hongwei Zhou & Xuanjun Zong & Zhou Xu & Yonghui Sun, 2019. "Hierarchical Multi-Objective Fuzzy Collaborative Optimization of Integrated Energy System under Off-Design Performance," Energies, MDPI, vol. 12(5), pages 1-27, March.
    2. De Jaeger, Ina & Reynders, Glenn & Ma, Yixiao & Saelens, Dirk, 2018. "Impact of building geometry description within district energy simulations," Energy, Elsevier, vol. 158(C), pages 1060-1069.
    3. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    4. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    5. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    6. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
    7. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    8. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    9. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    10. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    11. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    12. Cai, Hanmin & You, Shi & Wu, Jianzhong, 2020. "Agent-based distributed demand response in district heating systems," Applied Energy, Elsevier, vol. 262(C).
    13. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    14. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    15. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    16. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    17. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    18. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    19. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    20. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2586-:d:245737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.