IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i4p567-d95281.html
   My bibliography  Save this article

Biomass Energy Technological Paradigm (BETP): Trends in This Sector

Author

Listed:
  • Meihui Li

    (Uncertainty Decision-Making Laboratory, Sichuan University, Chengdu 610064, China
    Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, China)

  • Na Luo

    (Uncertainty Decision-Making Laboratory, Sichuan University, Chengdu 610064, China
    Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, China)

  • Yi Lu

    (Uncertainty Decision-Making Laboratory, Sichuan University, Chengdu 610064, China)

Abstract

Renewable energy plays a significant role in the world for obvious environmental and economic reasons with respect to the increasing energy crisis and fossil fuel environmental problems. Biomass energy, one of the most promising renewable energy technologies, has drawn increasing attention in recent years. However, biomass technologies still vary without an integrated framework. Considering the theory of a technological paradigm and implementing a literature analysis, biomass technological development was found to follow a three-stage technological paradigm, which can be divided into: BETP (biomass energy technological paradigm) competition, BETP diffusion, and BETP shift. Further, the literature review indicates that waste, like municipal solid waste (MSW), has the potential to be an important future trend in the world and waste-to-energy (WTE) is designed for sustainable waste management. Among WTE, anaerobic digestion has the potential to produce energy from waste sustainably, safely, and cost-effectively. The new BETP technological framework proposed in this paper may offer new research ideas and provide a significant reference for scholars.

Suggested Citation

  • Meihui Li & Na Luo & Yi Lu, 2017. "Biomass Energy Technological Paradigm (BETP): Trends in This Sector," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:567-:d:95281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/4/567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/4/567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria R. Partidario & Gustavo Vicente & Constança Belchior, 2010. "Can New Perspectives on Sustainability Drive Lifestyles?," Sustainability, MDPI, vol. 2(9), pages 1-24, September.
    2. Zhou, Hui & Meng, AiHong & Long, YanQiu & Li, QingHai & Zhang, YanGuo, 2014. "An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 107-122.
    3. Jungjoon Kim & Sangpil Lee & We Shim & Jongseok Kang, 2016. "A Mapping of Marine Biodiversity Research Trends and Collaboration in the East Asia Region from 1996–2015," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    4. Johari, Anwar & Ahmed, Saeed Isa & Hashim, Haslenda & Alkali, Habib & Ramli, Mat, 2012. "Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2907-2912.
    5. Chynoweth, David P & Owens, John M & Legrand, Robert, 2001. "Renewable methane from anaerobic digestion of biomass," Renewable Energy, Elsevier, vol. 22(1), pages 1-8.
    6. Jongchan Kim & Joonhyuck Lee & Gabjo Kim & Sangsung Park & Dongsik Jang, 2016. "A Hybrid Method of Analyzing Patents for Sustainable Technology Management in Humanoid Robot Industry," Sustainability, MDPI, vol. 8(5), pages 1-14, May.
    7. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    8. Weidong Huang, 2015. "An Integrated Biomass Production and Conversion Process for Sustainable Bioenergy," Sustainability, MDPI, vol. 7(1), pages 1-15, January.
    9. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    10. Chen, Longjian & Xing, Li & Han, Lujia, 2009. "Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2689-2695, December.
    11. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    12. Asadullah, Mohammad, 2014. "Barriers of commercial power generation using biomass gasification gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 201-215.
    13. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    14. Kothari, Richa & Tyagi, V.V. & Pathak, Ashish, 2010. "Waste-to-energy: A way from renewable energy sources to sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3164-3170, December.
    15. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    16. Éric Archambault & David Campbell & Yves Gingras & Vincent Larivière, 2009. "Comparing bibliometric statistics obtained from the Web of Science and Scopus," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(7), pages 1320-1326, July.
    17. Marc Willinger & Ehud Zuscovitch, 1993. "Efficience, irréversibilités et constitution des technologies," Revue d'Économie Industrielle, Programme National Persée, vol. 65(1), pages 7-22.
    18. Halkos, George & Petrou, Kleoniki Natalia, 2016. "Efficient waste management practices: A review," MPRA Paper 71518, University Library of Munich, Germany.
    19. Daniel Hoornweg & Perinaz Bhada-Tata & Chris Kennedy, 2013. "Environment: Waste production must peak this century," Nature, Nature, vol. 502(7473), pages 615-617, October.
    20. Aghaei Chadegani, Arezoo & Salehi, Hadi & Md Yunus, Melor & Farhadi, Hadi & Fooladi, Masood & Farhadi, Maryam & Ale Ebrahim, Nader, 2013. "A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases," MPRA Paper 46898, University Library of Munich, Germany, revised 18 Mar 2013.
    21. Egbert H. van Nes & Marten Scheffer & Victor Brovkin & Timothy M. Lenton & Hao Ye & Ethan Deyle & George Sugihara, 2015. "Causal feedbacks in climate change," Nature Climate Change, Nature, vol. 5(5), pages 445-448, May.
    22. Tran Dang Xuan & Nguyen Thi Phuong & Do Tan Khang & Tran Dang Khanh, 2015. "Influence of Sowing Times, Densities, and Soils to Biomass and Ethanol Yield of Sweet Sorghum," Sustainability, MDPI, vol. 7(9), pages 1-22, August.
    23. Charles H. K. Lam & Alvin W. M. Ip & John Patrick Barford & Gordon McKay, 2010. "Use of Incineration MSW Ash: A Review," Sustainability, MDPI, vol. 2(7), pages 1-26, July.
    24. Menikpura, S.N.M. & Sang-Arun, Janya & Bengtsson, Magnus, 2016. "Assessment of environmental and economic performance of Waste-to-Energy facilities in Thai cities," Renewable Energy, Elsevier, vol. 86(C), pages 576-584.
    25. Shin, Ho-Chul & Park, Jin-Won & Kim, Ho-Seok & Shin, Eui-Soon, 2005. "Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model," Energy Policy, Elsevier, vol. 33(10), pages 1261-1270, July.
    26. Loet Leydesdorff & Stephen Carley & Ismael Rafols, 2013. "Global maps of science based on the new Web-of-Science categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 589-593, February.
    27. Dinesh Surroop & Romeela Mohee, 2011. "Comparative assessment of anaerobic digestion of municipal solid waste at mesophilic and thermophilic temperatures," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 238-251.
    28. Capuano, D. & Costa, M. & Di Fraia, S. & Massarotti, N. & Vanoli, L., 2017. "Direct use of waste vegetable oil in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 759-770.
    29. Singh, R.P. & Tyagi, V.V. & Allen, Tanu & Ibrahim, M. Hakimi & Kothari, Richa, 2011. "An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4797-4808.
    30. Molino, A. & Nanna, F. & Villone, A., 2014. "Characterization of biomasses in the southern Italy regions for their use in thermal processes," Applied Energy, Elsevier, vol. 131(C), pages 180-188.
    31. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    32. Goyal, H.B. & Seal, Diptendu & Saxena, R.C., 2008. "Bio-fuels from thermochemical conversion of renewable resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 504-517, February.
    33. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    34. Kumarappan, Subbu & Joshi, Satish V. & MacLean, Heather, 2009. "Biomass Supply for Biofuel Production: Estimates for the United States and Canada," Agricultural Economic Report Series 51427, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    35. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Azapagic, Adisa, 2019. "Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries," Renewable Energy, Elsevier, vol. 141(C), pages 493-506.
    2. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    3. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    4. Zhao, Zhen-Yu & Chen, Yu-Long & Li, Heng, 2019. "What affects the development of renewable energy power generation projects in China: ISM analysis," Renewable Energy, Elsevier, vol. 131(C), pages 506-517.
    5. Liu Li & Chaoying Tang, 2020. "How Does Inter-Organizational Cooperation Impact Organizations’ Scientific Knowledge Generation? Evidence from the Biomass Energy Field," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    6. Fariha Kanwal & Ashfaq Ahmed & Farrukh Jamil & Sikander Rafiq & H. M. Uzair Ayub & Moinuddin Ghauri & M. Shahzad Khurram & Shahid Munir & Abrar Inayat & Muhammad S. Abu Bakar & Surendar Moogi & Su Shi, 2021. "Co-Combustion of Blends of Coal and Underutilised Biomass Residues for Environmental Friendly Electrical Energy Production," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    7. Azevedo, Susana Garrido & Sequeira, Tiago & Santos, Marcelo & Mendes, Luis, 2019. "Biomass-related sustainability: A review of the literature and interpretive structural modeling," Energy, Elsevier, vol. 171(C), pages 1107-1125.
    8. Margarida Casau & Marta Ferreira Dias & João C. O. Matias & Leonel J. R. Nunes, 2022. "Residual Biomass: A Comprehensive Review on the Importance, Uses and Potential in a Circular Bioeconomy Approach," Resources, MDPI, vol. 11(4), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    2. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    3. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    4. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    5. Obi, Okey Francis, 2015. "Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1749-1758.
    6. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    7. KS Rajmohan & C Ramya & Sunita Varjani, 2021. "Trends and advances in bioenergy production and sustainable solid waste management," Energy & Environment, , vol. 32(6), pages 1059-1085, September.
    8. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    9. Xu, Jiuping & Ni, Ting, 2017. "Integrated technological paradigm-based soft paths towards sustainable development of small hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 623-634.
    10. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    11. Okello, Collins & Pindozzi, Stefania & Faugno, Salvatore & Boccia, Lorenzo, 2013. "Development of bioenergy technologies in Uganda: A review of progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 55-63.
    12. Ferreira, Sérgio & Monteiro, Eliseu & Brito, Paulo & Vilarinho, Cândida, 2017. "Biomass resources in Portugal: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1221-1235.
    13. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    14. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    15. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    16. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    17. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    18. Hyejin Park & Han Woo Park, 2018. "Two-side face of knowledge building using scientometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2815-2836, November.
    19. Arbulú, Italo & Lozano, Javier & Rey-Maquieira, Javier, 2017. "The challenges of tourism to waste-to-energy public-private partnerships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 916-921.
    20. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:567-:d:95281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.