IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1543-d225443.html
   My bibliography  Save this article

Desiccant-Based Air Handling Unit Alternatively Equipped with Three Hygroscopic Materials and Driven by Solar Energy

Author

Listed:
  • Piero Bareschino

    (Dipartimento di Ingegneria, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Francesco Pepe

    (Dipartimento di Ingegneria, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Carlo Roselli

    (Dipartimento di Ingegneria, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Maurizio Sasso

    (Dipartimento di Ingegneria, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Francesco Tariello

    (Dipartimento di Medicina e Scienze della Salute “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy)

Abstract

The energy demand for the air-conditioning of buildings has shown a very significant growth trend in the last two decades. In this paper three alternative hygroscopic materials for desiccant wheels are compared considering the operation of the air handling unit they are installed in. The analyses are performed by means of the TRNSYS 17 ® software, simulating the plant with the desiccant wheel made of: silica-gel, i.e., the filling actually used in the experimental plant desiccant wheel of the University of Sannio Laboratory; MIL101@GO-6 (MILGO), a composite material, consisting of graphite oxide dispersed in a MIL101 metal organic framework structure; Campanian Ignimbrite, a naturally occurring tuff, rich in phillipsite and chabazite zeolites, widespread in the Campania region, in Southern Italy. The air-conditioning system analyzed serves a university classroom located in Benevento, and it is activated by the thermal energy of a solar field for which three surfaces are considered: about 20, 27 and 34 m 2 . The results demonstrate that a primary energy saving of about 20%, 29%, 15% can be reached with silica-gel, MILGO and zeolite-rich tuff desiccant wheel based air handling units, respectively.

Suggested Citation

  • Piero Bareschino & Francesco Pepe & Carlo Roselli & Maurizio Sasso & Francesco Tariello, 2019. "Desiccant-Based Air Handling Unit Alternatively Equipped with Three Hygroscopic Materials and Driven by Solar Energy," Energies, MDPI, vol. 12(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1543-:d:225443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fong, K.F. & Lee, C.K., 2018. "Impact of adsorbent characteristics on performance of solid desiccant wheel," Energy, Elsevier, vol. 144(C), pages 1003-1012.
    2. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    3. Giovanni Angrisani & Carlo Roselli & Maurizio Sasso & Francesco Tariello & Giuseppe Peter Vanoli, 2016. "Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios," Energies, MDPI, vol. 9(9), pages 1-24, September.
    4. Al-Alili, Ali & Hwang, Yunho & Radermacher, Reinhard, 2015. "Performance of a desiccant wheel cycle utilizing new zeolite material: Experimental investigation," Energy, Elsevier, vol. 81(C), pages 137-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niemann, Peter & Schmitz, Gerhard, 2020. "Air conditioning system with enthalpy recovery for space heating and air humidification: An experimental and numerical investigation," Energy, Elsevier, vol. 213(C).
    2. Laith Al-Hyari & Miklos Kassai, 2020. "Development and Experimental Validation of TRNSYS Simulation Model for Heat Wheel Operated in Air Handling Unit," Energies, MDPI, vol. 13(18), pages 1-13, September.
    3. Miklos Kassai, 2019. "Energy Performance Investigation of a Direct Expansion Ventilation Cooling System with a Heat Wheel," Energies, MDPI, vol. 12(22), pages 1-16, November.
    4. Win-Jet Luo & Dini Faridah & Fikri Rahmat Fasya & Yu-Sheng Chen & Fikri Hizbul Mulki & Utami Nuri Adilah, 2019. "Performance Enhancement of Hybrid Solid Desiccant Cooling Systems by Integrating Solar Water Collectors in Taiwan," Energies, MDPI, vol. 12(18), pages 1-18, September.
    5. Elena Belyanovskaya & Miroslav Rimár & Roman D. Lytovchenko & Miroslav Variny & Kostyantyn M. Sukhyy & Oleksandr O. Yeromin & Mikhailo P. Sykhyy & Elena M. Prokopenko & Irina V. Sukha & Mikhailo V. Gu, 2020. "Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    6. Mohammad Reza Safaei & Hamid Reza Goshayeshi & Issa Chaer, 2019. "Solar Still Efficiency Enhancement by Using Graphene Oxide/Paraffin Nano-PCM," Energies, MDPI, vol. 12(10), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, X.N. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Investigation on novel desiccant wheel using wood pulp fiber paper with high coating ratio as matrix," Energy, Elsevier, vol. 176(C), pages 493-504.
    2. Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
    3. Hwang, Won-Baek & Choi, Sun & Lee, Dae-Young, 2017. "In-depth analysis of the performance of hybrid desiccant cooling system incorporated with an electric heat pump," Energy, Elsevier, vol. 118(C), pages 324-332.
    4. Park, Myeong Hyeon & Chung, Jun Yeob & Hong, Seong Ho & Shin, Hyun Ho & Lee, Dongchan & Kim, Yongchan, 2023. "Optimized geometric designs of desiccant wheels with metal-organic frameworks considering dehumidification capacity and energy," Energy, Elsevier, vol. 284(C).
    5. Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Chung, Jun Yeob & Park, Myeong Hyeon & Hong, Seong Ho & Baek, Jaehyun & Han, Changho & Lee, Sewon & Kang, Yong Tae & Kim, Yongchan, 2023. "Comparative performance evaluation of multi-objective optimized desiccant wheels coated with MIL-100 (Fe) and silica gel composite," Energy, Elsevier, vol. 283(C).
    8. Ge, T.S. & Zhang, J.Y. & Dai, Y.J. & Wang, R.Z., 2017. "Experimental study on performance of silica gel and potassium formate composite desiccant coated heat exchanger," Energy, Elsevier, vol. 141(C), pages 149-158.
    9. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    11. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    12. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Wang, J.Y. & Wang, R.Z. & Wang, L.W. & Liu, J.Y., 2017. "A high efficient semi-open system for fresh water production from atmosphere," Energy, Elsevier, vol. 138(C), pages 542-551.
    14. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    15. Bui, Duc Thuan & Kum Ja, M. & Gordon, Jeffrey M. & Ng, Kim Choon & Chua, Kian Jon, 2017. "A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification," Energy, Elsevier, vol. 132(C), pages 106-115.
    16. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Wang, Cong & Yang, Bianfeng & Ji, Xu & Zhang, Ren & Wu, Hailong, 2022. "Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification," Energy, Elsevier, vol. 251(C).
    18. Fong, K.F. & Lee, C.K., 2019. "Performance investigation of a SOFC-primed micro-combined hybrid cooling and power system in hot and humid regions," Energy, Elsevier, vol. 189(C).
    19. Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).
    20. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1543-:d:225443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.