IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4083-d280504.html
   My bibliography  Save this article

Analytical and Numerical Analysis of the Dynamics of a Moonpool Platform–Wave Energy Buoy (MP–WEB)

Author

Listed:
  • Fankai Kong

    (College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China)

  • Hengxu Liu

    (College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China)

  • Weiming Su

    (College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China)

  • Jingtao Ao

    (College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China)

  • Hailong Chen

    (College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China)

  • Fengmei Jing

    (College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China)

Abstract

In this work the hydrodynamic performance of a novel wave energy converter configuration was analytically and numerically studied by combining a moonpool and a wave energy buoy, called the moonpool platform–wave energy buoy (MP–WEB). A potential flow, semi-analytical approach was adopted to assess the total (incident, diffraction, radiation) wave forces acting on the device, and the wave capture and energy efficiency performance of this configuration was assessed, both in the time and frequency domain. The performance of the two configurations, single float and double float, were analyzed and compared in terms of diffraction force, added mass radiation force, motion, and power in the frequency domain. Using an impulse response function-based (IRF) method, the frequency domain results were converted in the time domain. The same parameters in the time domain were derived and the main results were confirmed. Wave energy conversion efficiency was significantly increased due to the resonance phenomenon inside the moonpool.

Suggested Citation

  • Fankai Kong & Hengxu Liu & Weiming Su & Jingtao Ao & Hailong Chen & Fengmei Jing, 2019. "Analytical and Numerical Analysis of the Dynamics of a Moonpool Platform–Wave Energy Buoy (MP–WEB)," Energies, MDPI, vol. 12(21), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4083-:d:280504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Changwei & Zuo, Lei, 2017. "On the dynamics and design of a two-body wave energy converter," Renewable Energy, Elsevier, vol. 101(C), pages 265-274.
    2. Zang, Zhipeng & Zhang, Qinghe & Qi, Yue & Fu, Xiaoying, 2018. "Hydrodynamic responses and efficiency analyses of a heaving-buoy wave energy converter with PTO damping in regular and irregular waves," Renewable Energy, Elsevier, vol. 116(PA), pages 527-542.
    3. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tay, Zhi Yung, 2022. "Energy generation enhancement of arrays of point absorber wave energy converters via Moonpool's resonance effect," Renewable Energy, Elsevier, vol. 188(C), pages 830-848.
    2. Hengxu Liu & Feng Yan & Fengmei Jing & Jingtao Ao & Zhaoliang Han & Fankai Kong, 2020. "Numerical and Experimental Investigation on a Moonpool-Buoy Wave Energy Converter," Energies, MDPI, vol. 13(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
    2. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
    3. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    4. Ropero-Giralda, Pablo & Crespo, Alejandro J.C. & Tagliafierro, Bonaventura & Altomare, Corrado & Domínguez, José M. & Gómez-Gesteira, Moncho & Viccione, Giacomo, 2020. "Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics," Renewable Energy, Elsevier, vol. 162(C), pages 1763-1776.
    5. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    6. Ma, Yong & Zhang, Aiming & Yang, Lele & Li, Hao & Zhai, Zhenfeng & Zhou, Heng, 2020. "Motion simulation and performance analysis of two-body floating point absorber wave energy converter," Renewable Energy, Elsevier, vol. 157(C), pages 353-367.
    7. Li, Xiaofan & Martin, Dillon & Liang, Changwei & Chen, ChienAn & Parker, Robert G. & Zuo, Lei, 2021. "Characterization and verification of a two-body wave energy converter with a novel power take-off," Renewable Energy, Elsevier, vol. 163(C), pages 910-920.
    8. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    9. Qiao Li & Motohiko Murai & Syu Kuwada, 2018. "A Study on Electrical Power for Multiple Linear Wave Energy Converter Considering the Interaction Effect," Energies, MDPI, vol. 11(11), pages 1-20, November.
    10. Al Shami, Elie & Wang, Zhun & Wang, Xu, 2021. "Non-linear dynamic simulations of two-body wave energy converters via identification of viscous drag coefficients of different shapes of the submerged body based on numerical wave tank CFD simulation," Renewable Energy, Elsevier, vol. 179(C), pages 983-997.
    11. Guo, Peng & Zhang, Yongliang & Chen, Wenchuang & Wang, Chen, 2024. "Fully coupled simulation of dynamic characteristics of a backward bent duct buoy oscillating water column wave energy converter," Energy, Elsevier, vol. 294(C).
    12. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    13. Rahimi, Amir & Rezaei, Saeed & Parvizian, Jamshid & Mansourzadeh, Shahriar & Lund, Jorrid & Hssini, Radhouane & Düster, Alexander, 2022. "Numerical and experimental study of the hydrodynamic coefficients and power absorption of a two-body point absorber wave energy converter," Renewable Energy, Elsevier, vol. 201(P1), pages 181-193.
    14. Xiao, Han & Wang, Xu, 2024. "Sensitivity analysis of design parameters and their interactions and performance prediction of a novel twin turbine wave energy converter," Energy, Elsevier, vol. 293(C).
    15. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    16. Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.
    17. Jeong-Seok Kim & Kyong-Hwan Kim & Jiyong Park & Sewan Park & Seung Ho Shin, 2021. "A Numerical Study on Hydrodynamic Energy Conversions of OWC-WEC with the Linear Decomposition Method under Irregular Waves," Energies, MDPI, vol. 14(6), pages 1-17, March.
    18. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    19. Stratigaki, Vasiliki & Troch, Peter & Forehand, David, 2019. "A fundamental coupling methodology for modeling near-field and far-field wave effects of floating structures and wave energy devices," Renewable Energy, Elsevier, vol. 143(C), pages 1608-1627.
    20. Piscopo, V. & Benassai, G. & Della Morte, R. & Scamardella, A., 2020. "Towards a unified formulation of time and frequency-domain models for point absorbers with single and double-body configuration," Renewable Energy, Elsevier, vol. 147(P1), pages 1525-1539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4083-:d:280504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.