IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp830-848.html
   My bibliography  Save this article

Energy generation enhancement of arrays of point absorber wave energy converters via Moonpool's resonance effect

Author

Listed:
  • Tay, Zhi Yung

Abstract

This paper presents the power generation from point absorber wave energy converters (WEC) when they are placed in a moonpool. Due to the effect of resonance in the moonpool and the hydrodynamic interaction between the arrays of WECs, the energy generation from the arrays of WECs could be increased significantly under their optimal design consideration. The arrays of different numbers of WECs, i.e., one, five and 21 are considered in the study, where the performance of the WECs in a moonpool is presented and the wave elevation surrounding the array of WECs is shown. The research finding shows that the power generated by the arrays can be significantly enhanced when the wave period is greater than 8s by deploying five-WEC in a 30-m diameter moonpool with draft greater than 1m. With the ideal design condition established, the multiple arrays of five WECs arranged in a 2×1 array and 2×2 array configurations, are placed in the moonpool and subjected to regular and irregular waves to study the possibility of further energy generation enhancement with increased numbers of arrays.

Suggested Citation

  • Tay, Zhi Yung, 2022. "Energy generation enhancement of arrays of point absorber wave energy converters via Moonpool's resonance effect," Renewable Energy, Elsevier, vol. 188(C), pages 830-848.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:830-848
    DOI: 10.1016/j.renene.2022.02.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hengxu Liu & Feng Yan & Fengmei Jing & Jingtao Ao & Zhaoliang Han & Fankai Kong, 2020. "Numerical and Experimental Investigation on a Moonpool-Buoy Wave Energy Converter," Energies, MDPI, vol. 13(9), pages 1-16, May.
    2. Zhao, Huai & Zhang, Haicheng & Bi, Rengui & Xi, Ru & Xu, Daolin & Shi, Qijia & Wu, Bo, 2020. "Enhancing efficiency of a point absorber bistable wave energy converter under low wave excitations," Energy, Elsevier, vol. 212(C).
    3. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    4. Jin, Chungkuk & Kang, HeonYong & Kim, MooHyun & Cho, Ilhyoung, 2020. "Performance estimation of resonance-enhanced dual-buoy wave energy converter using coupled time-domain simulation," Renewable Energy, Elsevier, vol. 160(C), pages 1445-1457.
    5. Silvia Bozzi & Adrià Moreno Miquel & Alessandro Antonini & Giuseppe Passoni & Renata Archetti, 2013. "Modeling of a Point Absorber for Energy Conversion in Italian Seas," Energies, MDPI, vol. 6(6), pages 1-19, June.
    6. Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
    7. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    8. Fankai Kong & Hengxu Liu & Weiming Su & Jingtao Ao & Hailong Chen & Fengmei Jing, 2019. "Analytical and Numerical Analysis of the Dynamics of a Moonpool Platform–Wave Energy Buoy (MP–WEB)," Energies, MDPI, vol. 12(21), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Huaqing & Zhang, Haicheng & Zheng, Siming & Xu, Daolin, 2024. "Characteristics of a two-dimensional periodic wave energy converter array," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).
    2. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    4. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).
    5. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    6. Chen, Zihe & Zhang, Xiantao & Liu, Lei & Tian, Xinliang & Li, Xin, 2024. "Mechanical property identification and performance evaluation of a power take-off combined with a mechanical motion rectifier and a magnetic bistable device," Applied Energy, Elsevier, vol. 353(PA).
    7. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2021. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 2: Experimental validation," Renewable Energy, Elsevier, vol. 171(C), pages 1002-1013.
    8. Zhao, Xuanlie & Ning, Dezhi, 2018. "Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons," Energy, Elsevier, vol. 155(C), pages 226-233.
    9. Cheng, Yong & Du, Weiming & Dai, Saishuai & Yuan, Zhiming & Incecik, Atilla, 2024. "Wave energy conversion by an array of oscillating water columns deployed along a long-flexible floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
    11. Chen, Zhongfei & Zhou, Binzhen & Zhang, Liang & Li, Can & Zang, Jun & Zheng, Xiongbo & Xu, Jianan & Zhang, Wanchao, 2018. "Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system," Energy, Elsevier, vol. 165(PA), pages 1008-1020.
    12. Xuanlie Zhao & Dezhi Ning & Chongwei Zhang & Haigui Kang, 2017. "Hydrodynamic Investigation of an Oscillating Buoy Wave Energy Converter Integrated into a Pile-Restrained Floating Breakwater," Energies, MDPI, vol. 10(5), pages 1-16, May.
    13. Li, Demin & Dong, Xiaochen & Borthwick, Alistair G.L. & Sharma, Sanjay & Wang, Tianyuan & Huang, Heao & Shi, Hongda, 2024. "Two-buoy and single-buoy floating wave energy converters: A numerical comparison," Energy, Elsevier, vol. 296(C).
    14. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Zhou, Binzhen & Zheng, Zhi & Jin, Peng & Wang, Lei & Zang, Jun, 2022. "Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters," Energy, Elsevier, vol. 260(C).
    16. Huang, Shijie & Huang, Zhenhua, 2022. "Hydrodynamic performance of a row of closely-spaced bottom-sitting oscillating water columns," Renewable Energy, Elsevier, vol. 195(C), pages 344-356.
    17. Galparsoro, I. & Korta, M. & Subirana, I. & Borja, Á. & Menchaca, I. & Solaun, O. & Muxika, I. & Iglesias, G. & Bald, J., 2021. "A new framework and tool for ecological risk assessment of wave energy converters projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
    20. Samuel Draycott & Iwona Szadkowska & Marta Silva & David M Ingram, 2018. "Assessing the Macro-Economic Benefit of Installing a Farm of Oscillating Water Columns in Scotland and Portugal," Energies, MDPI, vol. 11(10), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:830-848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.