IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1522-d514235.html
   My bibliography  Save this article

A Numerical Study on Hydrodynamic Energy Conversions of OWC-WEC with the Linear Decomposition Method under Irregular Waves

Author

Listed:
  • Jeong-Seok Kim

    (Korea Research Institute of Ships and Ocean Engineering (KRISO), Deajeon 34103, Korea
    Department of Convergence Study on Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Korea)

  • Kyong-Hwan Kim

    (Korea Research Institute of Ships and Ocean Engineering (KRISO), Deajeon 34103, Korea)

  • Jiyong Park

    (Korea Research Institute of Ships and Ocean Engineering (KRISO), Deajeon 34103, Korea)

  • Sewan Park

    (Korea Research Institute of Ships and Ocean Engineering (KRISO), Deajeon 34103, Korea)

  • Seung Ho Shin

    (Korea Research Institute of Ships and Ocean Engineering (KRISO), Deajeon 34103, Korea
    Department of Convergence Study on Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Busan 49112, Korea)

Abstract

A numerical study was performed to investigate the applicability of the linear decomposition method for the hydrodynamic energy conversion of an oscillating-water-column type wave energy converter (OWC-WEC). Hydrodynamic problems of the OWC chamber were decomposed into the excitation and radiation problems with the time-domain numerical method based on the linear potential theory. A finite element method was applied to solve the potential flow in the entire fluid domain including OWC chamber structure. The validity of the linear decomposition method was examined by comparing with the direct interaction method for the turbine–chamber interaction based on the linear pressure drop characteristics. In order to estimate the hydrodynamic energy conversion performance under the irregular waves, the response spectrum method was applied with the transfer function based on the linear decomposition method. Under the various irregular wave conditions, the pneumatic power of OWC-WEC calculated by the response spectrum based on the linear decomposition method agreed well with the direct irregular wave simulation results.

Suggested Citation

  • Jeong-Seok Kim & Kyong-Hwan Kim & Jiyong Park & Sewan Park & Seung Ho Shin, 2021. "A Numerical Study on Hydrodynamic Energy Conversions of OWC-WEC with the Linear Decomposition Method under Irregular Waves," Energies, MDPI, vol. 14(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1522-:d:514235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    2. Rezanejad, K. & Bhattacharjee, J. & Guedes Soares, C., 2015. "Analytical and numerical study of dual-chamber oscillating water columns on stepped bottom," Renewable Energy, Elsevier, vol. 75(C), pages 272-282.
    3. Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
    4. Ning, De-Zhi & Shi, Jin & Zou, Qing-Ping & Teng, Bin, 2015. "Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)," Energy, Elsevier, vol. 83(C), pages 177-188.
    5. Contestabile, Pasquale & Crispino, Gaetano & Di Lauro, Enrico & Ferrante, Vincenzo & Gisonni, Corrado & Vicinanza, Diego, 2020. "Overtopping breakwater for wave Energy Conversion: Review of state of art, recent advancements and what lies ahead," Renewable Energy, Elsevier, vol. 147(P1), pages 705-718.
    6. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    7. Josset, C. & Clément, A.H., 2007. "A time-domain numerical simulator for oscillating water column wave power plants," Renewable Energy, Elsevier, vol. 32(8), pages 1379-1402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueyan Li & Zhen Yu & Hengliang Qu & Moyao Yang & Hongyuan Shi & Zhenhua Zhang, 2023. "Experimental Study on the Aerodynamic Performance and Wave Energy Capture Efficiency of Square and Curved OWC Wave Energy Conversion Devices," Sustainability, MDPI, vol. 15(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    2. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.
    3. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2016. "Numerical energy balance analysis for an onshore oscillating water column–wave energy converter," Energy, Elsevier, vol. 116(P1), pages 539-557.
    4. Trivedi, Kshma & Koley, Santanu, 2023. "Mathematical modeling of oscillating water column wave energy converter devices placed over an undulated seabed in a two-layer fluid system," Renewable Energy, Elsevier, vol. 216(C).
    5. Ning, De-zhi & Wang, Rong-quan & Chen, Li-fen & Sun, Ke, 2019. "Experimental investigation of a land-based dual-chamber OWC wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 48-60.
    6. Guo, Baoming & Ning, Dezhi & Wang, Rongquan & Ding, Boyin, 2021. "Hydrodynamics of an oscillating water column WEC - Breakwater integrated system with a pitching front-wall," Renewable Energy, Elsevier, vol. 176(C), pages 67-80.
    7. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
    9. Trivedi, Kshma & Koley, Santanu, 2023. "Performance of a hybrid wave energy converter device consisting of a piezoelectric plate and oscillating water column device placed over an undulated seabed," Applied Energy, Elsevier, vol. 333(C).
    10. Ayrton Alfonso Medina Rodríguez & Gregorio Posada Vanegas & Rodolfo Silva Casarín & Edgar Gerardo Mendoza Baldwin & Beatriz Edith Vega Serratos & Felipe Ernesto Puc Cutz & Enrique Alejandro Mangas Che, 2022. "Experimental Investigation of the Hydrodynamic Performance of Land-Fixed Nearshore and Onshore Oscillating Water Column Systems with a Thick Front Wall," Energies, MDPI, vol. 15(7), pages 1-26, March.
    11. Medina Rodríguez, Ayrton Alfonso & Trivedi, Kshma & Koley, Santanu & Oderiz Martinez, Itxaso & Mendoza, Edgar & Posada Vanegas, Gregorio & Silva, Rodolfo, 2023. "Improved hydrodynamic performance of an OWC device based on a Helmholtz resonator," Energy, Elsevier, vol. 273(C).
    12. Wang, Chen & Zhang, Yongliang & Deng, Zhengzhi, 2022. "Wave power extraction for an oscillating water column device consisting of a surging front and back lip-wall: An analytical study," Renewable Energy, Elsevier, vol. 184(C), pages 100-114.
    13. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    14. Cheng, Yong & Ji, Chunyan & Zhai, Gangjun, 2019. "Fully nonlinear analysis incorporating viscous effects for hydrodynamics of an oscillating wave surge converter with nonlinear power take-off system," Energy, Elsevier, vol. 179(C), pages 1067-1081.
    15. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    16. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Wang, Guoyu, 2021. "A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device," Energy, Elsevier, vol. 225(C).
    17. Dezhi Ning & Rongquan Wang & Chongwei Zhang, 2017. "Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
    18. Ning, De-zhi & Zhou, Yu & Mayon, Robert & Johanning, Lars, 2020. "Experimental investigation on the hydrodynamic performance of a cylindrical dual-chamber Oscillating Water Column device," Applied Energy, Elsevier, vol. 260(C).
    19. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    20. Rezanejad, K. & Guedes Soares, C. & López, I. & Carballo, R., 2017. "Experimental and numerical investigation of the hydrodynamic performance of an oscillating water column wave energy converter," Renewable Energy, Elsevier, vol. 106(C), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1522-:d:514235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.