IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3805-d581617.html
   My bibliography  Save this article

Assessment of Rooftop Solar Power Generation to Meet Residential Loads in the City of Neom, Saudi Arabia

Author

Listed:
  • Nasser Alqahtani

    (Saudi Standards, Metrology and Quality Organization, P.O. Box 3437, Riyadh 11471, Saudi Arabia)

  • Nazmiye Balta-Ozkan

    (School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK)

Abstract

The economic and social development of the Kingdom of Saudi Arabia (KSA) has led to a rapid increase in the consumption of electricity, with the residential sector consuming approximately 50% of total electricity production. The KSA depends largely on non-renewable energy resources, and the government has produced Saudi Vision 2030. This plan aims to lessen the country’s reliance on fossil fuels and reduce associated problems such as air pollution. Saudi Vision 2030 combines renewable energy and new building designs so that, for example, the planned city of Neom will be net zero energy. This study addresses how best to reduce Neom’s reliance on the national grid through rooftop photovoltaic generation in residential buildings. The study develops a techno-economic model of rooftop PV with battery storage suitable for existing residential building types likely to be built in Neom city (villas, traditional houses, and apartments), and assesses the optimal PV size, battery storage capacity, and optimal orientation of the PV panels. The study used HOMER Pro to compute the Net Present Cost, Levelized Cost of Energy, orientation of PV panels, and optimum PV system size. The optimal size of PV system is 14.0 kW for the villa, 11.1 kW for the traditional dwelling, and 10.3 kW for the apartment, each with a single battery of capacity 12 kWh.

Suggested Citation

  • Nasser Alqahtani & Nazmiye Balta-Ozkan, 2021. "Assessment of Rooftop Solar Power Generation to Meet Residential Loads in the City of Neom, Saudi Arabia," Energies, MDPI, vol. 14(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3805-:d:581617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Bilal Awan & Muhammad Zubair & Praveen R. P. & Ahmed G. Abokhalil, 2018. "Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    2. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    3. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    4. Kosmadakis, Ioannis E. & Elmasides, Costas & Koulinas, Georgios & Tsagarakis, Konstantinos P., 2021. "Energy unit cost assessment of six photovoltaic-battery configurations," Renewable Energy, Elsevier, vol. 173(C), pages 24-41.
    5. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Omar Alrawi & I. Safak Bayram & Sami G. Al-Ghamdi & Muammer Koc, 2019. "High-Resolution Household Load Profiling and Evaluation of Rooftop PV Systems in Selected Houses in Qatar," Energies, MDPI, vol. 12(20), pages 1-25, October.
    7. Al Garni, Hassan Z. & Awasthi, Anjali & Wright, David, 2019. "Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia," Renewable Energy, Elsevier, vol. 133(C), pages 538-550.
    8. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
    9. Vimpari, Jussi & Junnila, Seppo, 2019. "Estimating the diffusion of rooftop PVs: A real estate economics perspective," Energy, Elsevier, vol. 172(C), pages 1087-1097.
    10. Asif, M., 2016. "Growth and sustainability trends in the buildings sector in the GCC region with particular reference to the KSA and UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1267-1273.
    11. Ghafoor, Abdul & Munir, Anjum, 2015. "Design and economics analysis of an off-grid PV system for household electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 496-502.
    12. Mariaud, Arthur & Acha, Salvador & Ekins-Daukes, Ned & Shah, Nilay & Markides, Christos N., 2017. "Integrated optimisation of photovoltaic and battery storage systems for UK commercial buildings," Applied Energy, Elsevier, vol. 199(C), pages 466-478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles Newbold & Mohammad Akrami & Mahdieh Dibaj, 2021. "Scenarios, Financial Viability and Pathways of Localized Hybrid Energy Generation Systems around the United Kingdom," Energies, MDPI, vol. 14(18), pages 1-27, September.
    2. Sultan J. Alharbi & Abdulaziz S. Alaboodi, 2023. "A Review on Techno-Economic Study for Supporting Building with PV-Grid-Connected Systems under Saudi Regulations," Energies, MDPI, vol. 16(3), pages 1-14, February.
    3. Wojciech Cieslik & Filip Szwajca & Sławomir Rosolski & Michał Rutkowski & Katarzyna Pietrzak & Jakub Wójtowicz, 2022. "Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    4. Tung Nguyen Thanh & Phap Vu Minh & Kien Duong Trung & Tuan Do Anh, 2021. "Study on Performance of Rooftop Solar Power Generation Combined with Battery Storage at Office Building in Northeast Region, Vietnam," Sustainability, MDPI, vol. 13(19), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    3. Ioan Cristian Hoarcă & Nicu Bizon & Ioan Sorin Șorlei & Phatiphat Thounthong, 2023. "Sizing Design for a Hybrid Renewable Power System Using HOMER and iHOGA Simulators," Energies, MDPI, vol. 16(4), pages 1-25, February.
    4. Strušnik, Dušan & Brandl, Daniel & Schober, Helmut & Ferčec, Janko & Avsec, Jurij, 2020. "A simulation model of the application of the solar STAF panel heat transfer and noise reduction with and without a transparent plate: A renewable energy review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Ahmed Bilal Awan & Mohammed Alghassab & Muhammad Zubair & Abdul Rauf Bhatti & Muhammad Uzair & Ghulam Abbas, 2020. "Comparative Analysis of Ground-Mounted vs. Rooftop Photovoltaic Systems Optimized for Interrow Distance between Parallel Arrays," Energies, MDPI, vol. 13(14), pages 1-21, July.
    6. Li, Chong & Zheng, Yuan & Li, Zhengyong & Zhang, Lei & Zhang, Lin & Shan, Yicai & Tang, Qinghui, 2021. "Techno-economic and environmental evaluation of grid-connected and off-grid hybrid intermittent power generation systems: A case study of a mild humid subtropical climate zone in China," Energy, Elsevier, vol. 230(C).
    7. Ali S. Alghamdi, 2021. "Performance Enhancement of Roof-Mounted Photovoltaic System: Artificial Neural Network Optimization of Ground Coverage Ratio," Energies, MDPI, vol. 14(6), pages 1-18, March.
    8. Ullah, Zia & Elkadeem, M.R. & Kotb, Kotb M. & Taha, Ibrahim B.M. & Wang, Shaorong, 2021. "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, Elsevier, vol. 179(C), pages 885-910.
    9. Abdullahi Abubakar Mas’ud & Hassan Zuhair Al-Garni, 2021. "Optimum Configuration of a Renewable Energy System Using Multi-Year Parameters and Advanced Battery Storage Modules: A Case Study in Northern Saudi Arabia," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    10. Salah Ud-Din Khan & Irfan Wazeer & Zeyad Almutairi, 2023. "Comparative Analysis of SAM and RETScreen Tools for the Case Study of 600 kW Solar PV System Installation in Riyadh, Saudi Arabia," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    11. Youssef Kassem & Hüseyin Gökçekuş & Ali Güvensoy, 2021. "Techno-Economic Feasibility of Grid-Connected Solar PV System at Near East University Hospital, Northern Cyprus," Energies, MDPI, vol. 14(22), pages 1-27, November.
    12. Viole, Isabelle & Valenzuela-Venegas, Guillermo & Sartori, Sabrina & Zeyringer, Marianne, 2024. "Integrated life cycle assessment in off-grid energy system design—Uncovering low hanging fruit for climate mitigation," Applied Energy, Elsevier, vol. 367(C).
    13. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    14. Nawaz Edoo & Robert T. F. Ah King, 2021. "Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant," Energies, MDPI, vol. 14(23), pages 1-22, December.
    15. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    16. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    17. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    18. Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).
    19. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    20. K. Arunprasath & S. Bathrinath & R. K. A. Bhalaji & Koppiahraj Karuppiah & Anish Nair, 2023. "An integrated approach to modelling of barriers in implementation of cellular manufacturing systems in production industries," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1370-1378, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3805-:d:581617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.