IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4451-d289878.html
   My bibliography  Save this article

What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?

Author

Listed:
  • Natália Gava Gastaldo

    (Department of Production and Systems Engineering, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil)

  • Graciele Rediske

    (Department of Production and Systems Engineering, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil)

  • Paula Donaduzzi Rigo

    (Department of Production and Systems Engineering, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil)

  • Carmen Brum Rosa

    (Department of Electrical Energy Processing, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil)

  • Leandro Michels

    (Department of Electrical Energy Processing, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil)

  • Julio Cezar Mairesse Siluk

    (Department of Production and Systems Engineering, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil)

Abstract

The implementation of energy-efficient systems in homes is of interest to many people, especially regarding the use of solar photovoltaic (PV) energy systems. Solar PV generation is essential worldwide because it is a significant source of renewable energy, wherein electricity can be stored for future use, and a cost-effective path for residential consumers. In contrast, considering the number of people who invest in PV systems versus those who do not, adherence is significantly unequal throughout society. Accordingly, predominant factors exist that increase the likelihood of residential PV solar power generation system adoption, which are seen as opportunities to increase energy efficiency. Furthermore, the literature is still insufficient regarding the exploration of variables that determine decisions around the purchase of green power generation systems. From this perspective, the current research aims to identify the socio-psychological profile of photovoltaic energy investors by applying four questionnaires, namely, psychological values, the human–nature relationship, motivation analyses, and household characteristics. The research results define the profile and motivations of green energy investors. The attitudes of potential investors are also predicted, and this research contributes to the development of the photovoltaic energy industry production chain by providing relevant information for better photovoltaic policy design and more targeted marketing strategies for companies.

Suggested Citation

  • Natália Gava Gastaldo & Graciele Rediske & Paula Donaduzzi Rigo & Carmen Brum Rosa & Leandro Michels & Julio Cezar Mairesse Siluk, 2019. "What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?," Energies, MDPI, vol. 12(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4451-:d:289878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    2. Vytis Varanavicius & Aida Navikaite & Yuriy Bilan & Wadim Strielkowski, 2017. "Analysis of Consumer Behaviour in Regional Energy Consumption," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(1), pages 147-156.
    3. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    4. Ek, Kristina & Söderholm, Patrik, 2008. "Norms and economic motivation in the Swedish green electricity market," Ecological Economics, Elsevier, vol. 68(1-2), pages 169-182, December.
    5. Monarca, Umberto & Cassetta, Ernesto & Pozzi, Cesare & Dileo, Ivano, 2018. "Tariff revisions and the impact of variability of solar irradiation on PV policy support: The case of Italy," Energy Policy, Elsevier, vol. 119(C), pages 307-316.
    6. Mahapatra, Krushna & Gustavsson, Leif, 2008. "An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden," Energy Policy, Elsevier, vol. 36(2), pages 577-590, February.
    7. Chen, Kee Kuo, 2014. "Assessing the effects of customer innovativeness, environmental value and ecological lifestyles on residential solar power systems install intention," Energy Policy, Elsevier, vol. 67(C), pages 951-961.
    8. Adongo, Charles A. & Taale, Francis & Adam, Issahaku, 2018. "Tourists' values and empathic attitude toward sustainable development in tourism," Ecological Economics, Elsevier, vol. 150(C), pages 251-263.
    9. Arnold, Uwe & Yildiz, Özgür, 2015. "Economic risk analysis of decentralized renewable energy infrastructures – A Monte Carlo Simulation approach," Renewable Energy, Elsevier, vol. 77(C), pages 227-239.
    10. Xu, Feifei & Fox, Dorothy, 2014. "Modelling attitudes to nature, tourism and sustainable development in national parks: A survey of visitors in China and the UK," Tourism Management, Elsevier, vol. 45(C), pages 142-158.
    11. Claudy, Marius C. & Michelsen, Claus & O'Driscoll, Aidan & Mullen, Michael R., 2010. "Consumer awareness in the adoption of microgeneration technologies: An empirical investigation in the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2154-2160, September.
    12. Carmen B. Rosa & Graciele Rediske & Paula D. Rigo & João Francisco M. Wendt & Leandro Michels & Julio Cezar M. Siluk, 2018. "Development of a Computational Tool for Measuring Organizational Competitiveness in the Photovoltaic Power Plants," Energies, MDPI, vol. 11(4), pages 1-13, April.
    13. Omar Alrawi & I. Safak Bayram & Sami G. Al-Ghamdi & Muammer Koc, 2019. "High-Resolution Household Load Profiling and Evaluation of Rooftop PV Systems in Selected Houses in Qatar," Energies, MDPI, vol. 12(20), pages 1-25, October.
    14. Hanimann, Raphael & Vinterbäck, Johan & Mark-Herbert, Cecilia, 2015. "Consumer behavior in renewable electricity: Can branding in accordance with identity signaling increase demand for renewable electricity and strengthen supplier brands?," Energy Policy, Elsevier, vol. 78(C), pages 11-21.
    15. Palm, Jenny, 2018. "Household installation of solar panels – Motives and barriers in a 10-year perspective," Energy Policy, Elsevier, vol. 113(C), pages 1-8.
    16. Salm, Sarah & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2016. "What are retail investors' risk-return preferences towards renewable energy projects? A choice experiment in Germany," Energy Policy, Elsevier, vol. 97(C), pages 310-320.
    17. Lazzeroni, P. & Olivero, S. & Repetto, M., 2017. "Economic perspective for PV under new Italian regulatory framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 283-295.
    18. Gurtner, Sebastian & Soyez, Katja, 2016. "How to catch the generation Y: Identifying consumers of ecological innovations among youngsters," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 101-107.
    19. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
    20. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    21. Sommerfeld, Jeff & Buys, Laurie & Vine, Desley, 2017. "Residential consumers’ experiences in the adoption and use of solar PV," Energy Policy, Elsevier, vol. 105(C), pages 10-16.
    22. Bayer, Benjamin & Matschoss, Patrick & Thomas, Heiko & Marian, Adela, 2018. "The German experience with integrating photovoltaic systems into the low-voltage grids," Renewable Energy, Elsevier, vol. 119(C), pages 129-141.
    23. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    24. Gong, Binglin & Yang, Chun-Lei, 2012. "Gender differences in risk attitudes: Field experiments on the matrilineal Mosuo and the patriarchal Yi," Journal of Economic Behavior & Organization, Elsevier, vol. 83(1), pages 59-65.
    25. Willis, Ken & Scarpa, Riccardo & Gilroy, Rose & Hamza, Neveen, 2011. "Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption," Energy Policy, Elsevier, vol. 39(10), pages 6021-6029, October.
    26. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    27. Leenheer, Jorna & de Nooij, Michiel & Sheikh, Omer, 2011. "Own power: Motives of having electricity without the energy company," Energy Policy, Elsevier, vol. 39(9), pages 5621-5629, September.
    28. Charness, Gary & Gneezy, Uri, 2012. "Strong Evidence for Gender Differences in Risk Taking," Journal of Economic Behavior & Organization, Elsevier, vol. 83(1), pages 50-58.
    29. Braito, Michael & Flint, Courtney & Muhar, Andreas & Penker, Marianne & Vogel, Stefan, 2017. "Individual and collective socio-psychological patterns of photovoltaic investment under diverging policy regimes of Austria and Italy," Energy Policy, Elsevier, vol. 109(C), pages 141-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    2. Ruxu Sheng & Juntian Du & Songqi Liu & Changan Wang & Zidi Wang & Xiaoqian Liu, 2021. "Solar Photovoltaic Investment Changes across China Regions Using a Spatial Shift-Share Analysis," Energies, MDPI, vol. 14(19), pages 1-14, October.
    3. Rosa, Carmen Brum & Rigo, Paula Donaduzzi & Rediske, Graciele & Moccellin, Ana Paula & Mairesse Siluk, Julio Cezar & Michels, Leandro, 2021. "How to measure organizational performance of distributed generation in electric utilities? The Brazilian case," Renewable Energy, Elsevier, vol. 169(C), pages 191-203.
    4. Ariel Vieira de Oliveira & Márcia Cristina Schiavi Dazzi & Anita Maria da Rocha Fernandes & Rudimar Luis Scaranto Dazzi & Paulo Ferreira & Valderi Reis Quietinho Leithardt, 2022. "Decision Support Using Machine Learning Indication for Financial Investment," Future Internet, MDPI, vol. 14(11), pages 1-17, October.
    5. Rigo, Paula D. & Siluk, Julio Cezar M. & Lacerda, Daniel P. & Spellmeier, Júlia P., 2022. "Competitive business model of photovoltaic solar energy installers in Brazil," Renewable Energy, Elsevier, vol. 181(C), pages 39-50.
    6. Emily Schulte & Fabian Scheller & Wilmer Pasut & Thomas Bruckner, 2021. "Product traits, decision-makers, and household low-carbon technology adoptions: moving beyond single empirical studies," Papers 2112.11867, arXiv.org.
    7. Agnieszka Hajdukiewicz & Bożena Pera, 2020. "International Trade Disputes over Renewable Energy—the Case of the Solar Photovoltaic Sector," Energies, MDPI, vol. 13(2), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Hackbarth, André, 2018. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Reutlingen Working Papers on Marketing & Management 2019-2, Reutlingen University, ESB Business School.
    3. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    4. Karjalainen, Sami & Ahvenniemi, Hannele, 2019. "Pleasure is the profit - The adoption of solar PV systems by households in Finland," Renewable Energy, Elsevier, vol. 133(C), pages 44-52.
    5. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    6. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.
    7. Hackbarth, André & Löbbe, Sabine, 2020. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Energy Policy, Elsevier, vol. 138(C).
    8. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    9. Garlet, Taís Bisognin & Ribeiro, José Luis Duarte & de Souza Savian, Fernando & Mairesse Siluk, Julio Cezar, 2019. "Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 157-169.
    10. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    11. Stefania Troiano & Daniel Vecchiato & Francesco Marangon & Tiziano Tempesta & Federico Nassivera, 2019. "Households’ Preferences for a New ‘Climate-Friendly’ Heating System: Does Contribution to Reducing Greenhouse Gases Matter?," Energies, MDPI, vol. 12(13), pages 1-19, July.
    12. Selvakkumaran, Sujeetha & Ahlgren, Erik O., 2019. "Determining the factors of household energy transitions: A multi-domain study," Technology in Society, Elsevier, vol. 57(C), pages 54-75.
    13. Spyridon Karytsas & Ioannis Vardopoulos & Eleni Theodoropoulou, 2019. "Factors Affecting Sustainable Market Acceptance of Residential Microgeneration Technologies. A Two Time Period Comparative Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.
    14. Hansen, Anders Rhiger & Jacobsen, Mette Hove & Gram-Hanssen, Kirsten, 2022. "Characterizing the Danish energy prosumer: Who buys solar PV systems and why do they buy them?," Ecological Economics, Elsevier, vol. 193(C).
    15. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Ortega-Izquierdo, Margarita & Paredes-Salvador, Andrés & Montoya-Rasero, Carlos, 2019. "Analysis of the decision making factors for heating and cooling systems in Spanish households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 175-185.
    17. Côté, Elizabeth & Pons-Seres de Brauwer, Cristian, 2023. "Preferences of homeowners for heat-pump leasing: Evidence from a choice experiment in France, Germany, and Switzerland," Energy Policy, Elsevier, vol. 183(C).
    18. José Ángel Gimeno & Eva Llera & Sabina Scarpellini, 2018. "Investment Determinants in Self-Consumption Facilities: Characterization and Qualitative Analysis in Spain," Energies, MDPI, vol. 11(8), pages 1-24, August.
    19. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    20. Zander, Kerstin K., 2020. "Unrealised opportunities for residential solar panels in Australia," Energy Policy, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4451-:d:289878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.