IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i1p136-d194240.html
   My bibliography  Save this article

New Theoretical and Methodological Approaches to the Study of Heat Transfer in Coal Dust Combustion

Author

Listed:
  • Evgeniy Toropov

    (Institute of Engineering and Technology, South Ural State University, Chelyabinsk 454080, Russia)

  • Konstantin Osintsev

    (Institute of Engineering and Technology, South Ural State University, Chelyabinsk 454080, Russia)

  • Sergei Aliukov

    (Institute of Engineering and Technology, South Ural State University, Chelyabinsk 454080, Russia)

Abstract

The existing theories of heat transfer in combustion chambers of boiler units fail to take into account a number of important factors that affect the reliability of results, and the methodological approaches to optimizing combustion processes can be revised in view of the spatial and temporal parameters of flame. Hence, the research aimed to improve the fundamental theoretical and methodological principles of studying heat transfer in coal dust combustion in the combustion chambers of industrial steam generators. The authors proposed to extend the theory of heat transfer with the mathematical description of particle size distribution of coal dust. In addition, the authors used the developed mathematical model of coal dust combustion based on a continuous curve of the particle size distribution in the ensemble. The mathematical model is consistent with the aeromechanical and thermal characteristics of flame. This work introduced a concept of flame continuum as a continuous medium, where the processes of combustion and heat transfer are studied. To achieve the research aim, in this paper, the methods of combustion chamber zoning, the equations of stationary and non-stationary heat conduction, radiation, and convective heat transfer, were used. These methods were tested on a number of high-temperature units.

Suggested Citation

  • Evgeniy Toropov & Konstantin Osintsev & Sergei Aliukov, 2019. "New Theoretical and Methodological Approaches to the Study of Heat Transfer in Coal Dust Combustion," Energies, MDPI, vol. 12(1), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:136-:d:194240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roy, Poritosh & Dias, Goretty, 2017. "Prospects for pyrolysis technologies in the bioenergy sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 59-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova, 2021. "Experimental Study of a Coil Type Steam Boiler Operated on an Oil Field in the Subarctic Continental Climate," Energies, MDPI, vol. 14(4), pages 1-23, February.
    2. Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova, 2021. "Development of Methodological Bases of the Processes of Steam Formation in Coil Type Boilers Using Solar Concentrators," Energies, MDPI, vol. 14(8), pages 1-22, April.
    3. Anatoliy Alabugin & Konstantin Osintsev & Sergei Aliukov, 2021. "Methodological Foundations for Modeling the Processes of Combining Organic Fuel Generation Systems and Photovoltaic Cells into a Single Energy Technology Complex," Energies, MDPI, vol. 14(10), pages 1-38, May.
    4. Konstantin Osintsev & Sergei Aliukov & Yuri Prikhodko, 2021. "Management of the Torch Structure with the New Methodological Approaches to Regulation Based on Neural Network Algorithms," Energies, MDPI, vol. 14(7), pages 1-17, March.
    5. Konstantin Osintsev & Seregei Aliukov & Alexander Shishkov, 2021. "Improvement Dependability of Offshore Horizontal-Axis Wind Turbines by Applying New Mathematical Methods for Calculation the Excess Speed in Case of Wind Gusts," Energies, MDPI, vol. 14(11), pages 1-22, May.
    6. Konstantin Osintsev & Sergei Aliukov & Yuri Prikhodko, 2021. "A Case study of Exergy Losses of a Ground Heat Pump and Photovoltaic Cells System and Their Optimization," Energies, MDPI, vol. 14(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    2. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    3. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    4. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    5. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    6. Yang, Qiushuang & Mašek, Ondřej & Zhao, Ling & Nan, Hongyan & Yu, Shitong & Yin, Jianxiang & Li, Zhaopeng & Cao, Xinde, 2021. "Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation," Applied Energy, Elsevier, vol. 282(PB).
    7. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    8. Magdalena Matusiak & Radosław Ślęzak & Stanisław Ledakowicz, 2020. "Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis," Energies, MDPI, vol. 13(15), pages 1-15, August.
    9. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
    11. Cueva Zepeda, Lolita & Griffin, Gregory & Shah, Kalpit & Al-Waili, Ibrahim & Parthasarathy, Rajarathinam, 2023. "Energy potential, flow characteristics and stability of water and alcohol-based rice-straw biochar slurry fuel," Renewable Energy, Elsevier, vol. 207(C), pages 60-72.
    12. Hebin Shen & Syed Ahtsham Ali & Majed Alharthi & Ali Shan Shah & Abdul Basit Khan & Qaiser Abbas & Saeed ur Rahman, 2021. "Carbon-Free Energy and Sustainable Environment: The Role of Human Capital and Technological Revolutions in Attaining SDGs," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    13. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    14. Kumar, B. Ramesh & Mathimani, Thangavel & Sudhakar, M.P. & Rajendran, Karthik & Nizami, Abdul-Sattar & Brindhadevi, Kathirvel & Pugazhendhi, Arivalagan, 2021. "A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Mohamad Aziz, Nur Atiqah & Mohamed, Hassan & Kania, Dina & Ong, Hwai Chyuan & Zainal, Bidattul Syirat & Junoh, Hazlina & Ker, Pin Jern & Silitonga, A.S., 2024. "Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    16. Norfadhilah Hamzah & Koji Tokimatsu & Kunio Yoshikawa, 2019. "Solid Fuel from Oil Palm Biomass Residues and Municipal Solid Waste by Hydrothermal Treatment for Electrical Power Generation in Malaysia: A Review," Sustainability, MDPI, vol. 11(4), pages 1-23, February.
    17. Chintala, Venkateswarlu, 2018. "Production, upgradation and utilization of solar assisted pyrolysis fuels from biomass – A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 120-130.
    18. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Phuakpunk, Kiattikhoon & Chalermsinsuwan, Benjapon & Assabumrungrat, Suttichai, 2022. "Pyrolysis kinetic parameters investigation of single and tri-component biomass: Models fitting via comparative model-free methods," Renewable Energy, Elsevier, vol. 182(C), pages 494-507.
    20. Roy, Poritosh & Dutta, Animesh & Gallant, Jim, 2020. "Evaluation of the life cycle of hydrothermally carbonized biomass for energy and horticulture application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:136-:d:194240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.