IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124014976.html
   My bibliography  Save this article

Fast pyrolysis of paper sludge in a continuous stirred-tank reactor and liquid-liquid extraction of benzenoid aromatics from fast pyrolysis bio-liquid

Author

Listed:
  • Zhang, Tiantian
  • Rivas, Álvaro González
  • Fernandez, Xavier Fragua
  • Li, Na
  • Gucho, Eyerusalem
  • Zhu, Lin
  • Bijl, Anton
  • Llacuna, Joan Llorens
  • He, Songbo

Abstract

Paper sludge is a solid waste in paper mills and is conventionally treated by, e.g., landfill, composting, and incineration. Paper sludge contains paper production fillers and lignocellulosic biomass, both of which can be recycled to recover circular minerals and produce bio-based fuels and chemicals by, e.g., thermochemical recycling technology namely fast pyrolysis, for circular bioeconomy. In this paper, three different paper sludge samples collected in The Netherlands and Spain were analyzed by thermogravimetric analysis, moisture analysis, ash analysis, CHNS elemental analysis, powder X-ray diffraction, and X-ray fluorescence spectrometry. Fast pyrolysis of paper sludge was carried out in a lab-scale continuous stirred tank reactor at 500 ± 10 °C with a paper sludge feeding rate of 1 kg h−1. The recovery of circular minerals, which are mainly calcium carbonate, is 87.1 ± 2.2 % (on mineral basis). The yields of fast pyrolysis bio-liquid and biochar are 49.2 ± 6.7 wt% (on biomass basis, equivalent to 23.7 ± 2.2 wt% on paper sludge basis) and 23.8 ± 8.3 wt% (on biomass basis). Fast pyrolysis bio-liquid is a diluted aqueous containing various oxygenates (major, including alcohols, acids, benzenoid aromatics, aldehydes, ketones, ethers, and esters) and hydrocarbons. Liquid-liquid extraction of the fast pyrolysis bio-liquid using CH3OH/H2O and SO2/H2O was further performed to obtain an improved bio-liquid with relatively high concentration of the desired bio-based chemicals (namely benzenoid aromatics with the concentration of 53.1–65.9 area%). Both SO2/H2O and CH3OH/H2O show high liquid-liquid extraction efficiency to concentrate the benzenoid aromatics for 3.4–11.0 times. This work shows the fast pyrolysis followed by liquid-liquid extraction for the valorization of paper sludge, of which the former has been recently demonstrated on a pilot-scale unit in industry. However, the latter still needs to be further developed by, e.g., focusing on the extraction solvent and continuous liquid-liquid extraction process integrated to fast pyrolysis.

Suggested Citation

  • Zhang, Tiantian & Rivas, Álvaro González & Fernandez, Xavier Fragua & Li, Na & Gucho, Eyerusalem & Zhu, Lin & Bijl, Anton & Llacuna, Joan Llorens & He, Songbo, 2024. "Fast pyrolysis of paper sludge in a continuous stirred-tank reactor and liquid-liquid extraction of benzenoid aromatics from fast pyrolysis bio-liquid," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014976
    DOI: 10.1016/j.renene.2024.121429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.