IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1395-d149714.html
   My bibliography  Save this article

Modeling and Control of a Combined Heat and Power Unit with Two-Stage Bypass

Author

Listed:
  • Yaokui Gao

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Yong Hu

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Deliang Zeng

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Jizhen Liu

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Feng Chen

    (Beijing Guodian Zhishen Control Technology CO., Ltd., Beijing 102200, China)

Abstract

This paper presents a non-linear dynamic model of a combined heat and power (CHP) unit with two-stage bypass for the first time. This model is derived through an analysis of the material and energy balance of the CHP unit. The static parameters are determined via the design data of the CHP unit, and the dynamic parameters refer to model parameters of same type of units in other references. Based on the model, an optimized control scheme for the coordination system of the unit is proposed. This scheme introduces a stair-like feedforward-feedback predictive control algorithm to solve the control problem of large delays in boiler combustion, and integrates decoupling control to reduce the effect of external disturbance on the main steam pressure. Simulation results indicate that the model effectively reflects the dynamics of the CHP unit and can be used for designing and verifying its coordinated control system; the control scheme can achieve decoupling control of the CHP unit; the fluctuation of main steam pressure is considerably reduced; and the adjustment of coal feed flow is stable. In this case, the proposed scheme can guarantee the safe, stable and flexible operation of the unit and lay the foundation for decoupling the heat load-based constraint of CHP units, thereby expanding the access space of wind power in northern China.

Suggested Citation

  • Yaokui Gao & Yong Hu & Deliang Zeng & Jizhen Liu & Feng Chen, 2018. "Modeling and Control of a Combined Heat and Power Unit with Two-Stage Bypass," Energies, MDPI, vol. 11(6), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1395-:d:149714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kristo Helin & Behnam Zakeri & Sanna Syri, 2018. "Is District Heating Combined Heat and Power at Risk in the Nordic Area?—An Electricity Market Perspective," Energies, MDPI, vol. 11(5), pages 1-19, May.
    2. Radwa Salem & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2018. "Comparison and Evaluation of the Potential Energy, Carbon Emissions, and Financial Impacts from the Incorporation of CHP and CCHP Systems in Existing UK Hotel Buildings," Energies, MDPI, vol. 11(5), pages 1-15, May.
    3. Christidis, Andreas & Koch, Christoph & Pottel, Lothar & Tsatsaronis, George, 2012. "The contribution of heat storage to the profitable operation of combined heat and power plants in liberalized electricity markets," Energy, Elsevier, vol. 41(1), pages 75-82.
    4. Guanglin Zhang & Yu Cao & Yongsheng Cao & Demin Li & Lin Wang, 2017. "Optimal Energy Management for Microgrids with Combined Heat and Power (CHP) Generation, Energy Storages, and Renewable Energy Sources," Energies, MDPI, vol. 10(9), pages 1-18, August.
    5. Ping Li & Haixia Wang & Quan Lv & Weidong Li, 2017. "Combined Heat and Power Dispatch Considering Heat Storage of Both Buildings and Pipelines in District Heating System for Wind Power Integration," Energies, MDPI, vol. 10(7), pages 1-19, June.
    6. Shuang Rong & Weixing Li & Zhimin Li & Yong Sun & Taiyi Zheng, 2015. "Optimal Allocation of Thermal-Electric Decoupling Systems Based on the National Economy by an Improved Conjugate Gradient Method," Energies, MDPI, vol. 9(1), pages 1-21, December.
    7. Wang, Di & Zhou, Yunlong & Li, Xiaoli, 2018. "A dynamic model used for controller design for fast cut back of coal-fired boiler-turbine plant," Energy, Elsevier, vol. 144(C), pages 526-534.
    8. Raffaello Cozzolino, 2018. "Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller," Energies, MDPI, vol. 11(2), pages 1-21, February.
    9. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Combined heat and power operational modes for increased product flexibility in a waste incineration plant," Energy, Elsevier, vol. 202(C).
    2. Guo, Xusheng & Lou, Suhua & Chen, Zhe & Wu, Yaowu, 2022. "Flexible operation of integrated energy system with HVDC infeed considering multi-retrofitted combined heat and power units," Applied Energy, Elsevier, vol. 325(C).
    3. Lu, Nianci & Pan, Lei & Liu, Zhenxiang & Song, Yajun & Si, Paiyou, 2021. "Flexible operation control strategy for thermos-exchanger water level of two-by-one combined cycle gas turbine based on heat network storage utilization," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanjuan Yu & Hongkun Chen & Lei Chen, 2018. "Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System," Energies, MDPI, vol. 11(2), pages 1-16, January.
    2. Wei Wang & Yang Sun & Sitong Jing & Wenguang Zhang & Can Cui, 2018. "Improved Boiler-Turbine Coordinated Control of CHP Units with Heat Accumulators by Introducing Heat Source Regulation," Energies, MDPI, vol. 11(10), pages 1-15, October.
    3. Miguel Gonzalez-Salazar & Thomas Langrock & Christoph Koch & Jana Spieß & Alexander Noack & Markus Witt & Michael Ritzau & Armin Michels, 2020. "Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin," Energies, MDPI, vol. 13(23), pages 1-27, December.
    4. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.
    5. Benalcazar, Pablo, 2021. "Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: A case study," Energy, Elsevier, vol. 234(C).
    6. Dumitrascu Gheorghe & Feidt Michel & Popescu Aristotel & Grigorean Stefan, 2019. "Endoreversible Trigeneration Cycle Design Based on Finite Physical Dimensions Thermodynamics," Energies, MDPI, vol. 12(16), pages 1-21, August.
    7. Ryszard Bartnik & Zbigniew Buryn & Anna Hnydiuk-Stefan & Adam Juszczak, 2018. "Methodology and a Continuous Time Mathematical Model for Selecting the Optimum Capacity of a Heat Accumulator Integrated with a CHP Plant," Energies, MDPI, vol. 11(5), pages 1-17, May.
    8. Wang, Di & Liu, Deying & Wang, Chaonan & Zhou, Yunlong & Li, Xiaoli & Yang, Mei, 2022. "Flexibility improvement method of coal-fired thermal power plant based on the multi-scale utilization of steam turbine energy storage," Energy, Elsevier, vol. 239(PD).
    9. Asad Waqar & Muhammad Shahbaz Tanveer & Jehanzeb Ahmad & Muhammad Aamir & Muneeb Yaqoob & Fareeha Anwar, 2017. "Multi-Objective Analysis of a CHP Plant Integrated Microgrid in Pakistan," Energies, MDPI, vol. 10(10), pages 1-22, October.
    10. Bloess, Andreas, 2020. "Modeling of combined heat and power generation in the context of increasing renewable energy penetration," Applied Energy, Elsevier, vol. 267(C).
    11. Hendrik Butemann & Katja Schimmelpfeng, 2020. "Long-term electricity production planning of a flexible biogas plant considering wear and tear," Journal of Business Economics, Springer, vol. 90(9), pages 1289-1313, November.
    12. Fang, Tingting & Lahdelma, Risto, 2015. "Genetic optimization of multi-plant heat production in district heating networks," Applied Energy, Elsevier, vol. 159(C), pages 610-619.
    13. Cao, Lihua & Wang, Zhanzhou & Pan, Tongyang & Dong, Enfu & Hu, Pengfei & Liu, Miao & Ma, Tingshan, 2021. "Analysis on wind power accommodation ability and coal consumption of heat–power decoupling technologies for CHP units," Energy, Elsevier, vol. 231(C).
    14. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    15. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    16. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    17. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    18. Yan Zhang & Quan Lyu & Yang Li & Na Zhang & Lijun Zheng & Haoyan Gong & Hui Sun, 2020. "Research on Down-Regulation Cost of Flexible Combined Heat Power Plants Participating in Real-Time Deep Down-Regulation Market," Energies, MDPI, vol. 13(4), pages 1-17, February.
    19. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    20. Francesco Neirotti & Michel Noussan & Stefano Riverso & Giorgio Manganini, 2019. "Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks," Energies, MDPI, vol. 12(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1395-:d:149714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.