IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3139-d257967.html
   My bibliography  Save this article

A Comprehensive Method for Subsidence Prediction on Two-Seam Longwall Mining

Author

Listed:
  • Bin Zhang

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Key Laboratory of Deep Geodrilling Technology, Ministry of Natural Resources, Beijing 100083, China)

  • Jiacheng Ye

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Key Laboratory of Deep Geodrilling Technology, Ministry of Natural Resources, Beijing 100083, China)

  • Zhongjian Zhang

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Key Laboratory of Deep Geodrilling Technology, Ministry of Natural Resources, Beijing 100083, China)

  • Liang Xu

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Key Laboratory of Deep Geodrilling Technology, Ministry of Natural Resources, Beijing 100083, China)

  • Nengxiong Xu

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Key Laboratory of Deep Geodrilling Technology, Ministry of Natural Resources, Beijing 100083, China)

Abstract

The purpose of mining subsidence prediction is to establish a reliable assessment for surface subsidence resulting from underground mining. In this study, a new method for predicting subsidence in two-seam mining is proposed. First, the surface subsidence due to mining the upper seam is monitored. Then, taking the subsidence data as indicators, the optimal mechanical parameters of overlying strata can be obtained by orthogonal experimental design and inverse analysis of numerical simulation. Finally, further subsidence is calculated and predicted by the numerical model. A case of two-seam underground mining is studied using this methodology. This coal mine is located in the Dongsheng coal field in Inner Mongolia, China. Based on GPS surface subsidence monitoring and parameter inversion, the subsidence induced by two-seam mining is estimated and predicted. This study shows that the ratio of the height of overlying strata to mining thickness (H/M), mining configuration and adjacent mining have a significant effect on the surface subsidence caused by two-seam mining. By parameter inversion, the proposed optimal parameters can be applied to predict the subsidence of a nearby mine with similar stratigraphic conditions. Furthermore, this methodology can also be used to predict the subsidence caused by mining of more than two seams.

Suggested Citation

  • Bin Zhang & Jiacheng Ye & Zhongjian Zhang & Liang Xu & Nengxiong Xu, 2019. "A Comprehensive Method for Subsidence Prediction on Two-Seam Longwall Mining," Energies, MDPI, vol. 12(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3139-:d:257967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Sun & Jixiong Zhang & Qiang Zhang & Xu Zhao, 2017. "Analysis and Prevention of Geo-Environmental Hazards with High-Intensive Coal Mining: A Case Study in China’s Western Eco-Environment Frangible Area," Energies, MDPI, vol. 10(6), pages 1-15, June.
    2. Qingxiang Huang & Jian Cao, 2019. "Research on Coal Pillar Malposition Distance Based on Coupling Control of Three-Field in Shallow Buried Closely Spaced Multi-Seam Mining, China," Energies, MDPI, vol. 12(3), pages 1-17, January.
    3. Xiaowei Feng & Nong Zhang & Lianyuan Gong & Fei Xue & Xigui Zheng, 2015. "Application of a Backfilling Method in Coal Mining to Realise an Ecologically Sensitive “Black Gold” Industry," Energies, MDPI, vol. 8(5), pages 1-12, April.
    4. Lei Nie & Min Zhang & Heqing Jian, 2013. "Analysis of surface subsidence mechanism and regularity under the influence of seism and fault," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 773-780, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Strzałkowski, 2022. "Predicting Mining Areas Deformations under the Condition of High Strength and Depth of Cover," Energies, MDPI, vol. 15(13), pages 1-17, June.
    2. Bingchao Zhao & Yaxin Guo & Xuwei Mao & Di Zhai & Defu Zhu & Yuming Huo & Zedong Sun & Jingbin Wang, 2022. "Prediction Method for Surface Subsidence of Coal Seam Mining in Loess Donga Based on the Probability Integration Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
    3. André Vervoort, 2020. "The Time Duration of the Effects of Total Extraction Mining Methods on Surface Movement," Energies, MDPI, vol. 13(16), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Gong & Zhanguo Ma & Xiaoyan Ni & Ray Ruichong Zhang, 2017. "Floor Heave Mechanism of Gob-Side Entry Retaining with Fully-Mechanized Backfilling Mining," Energies, MDPI, vol. 10(12), pages 1-19, December.
    2. Shukun Zhang & Peng Jiang & Lu Lu & Shuai Wang & Haohao Wang, 2022. "Evaluation of Compressive Geophysical Prospecting Method for the Identification of the Abandoned Goaf at the Tengzhou Section of China’s Mu Shi Expressway," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    3. Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.
    4. Xiaoping Shao & Xin Li & Long Wang & Zhiyu Fang & Bingchao Zhao & Ershuai Liu & Yeqing Tao & Lang Liu, 2020. "Study on the Pressure-Bearing Law of Backfilling Material Based on Three-Stage Strip Backfilling Mining," Energies, MDPI, vol. 13(1), pages 1-16, January.
    5. Kang Ma & Yuxiu Zhang & Mengying Ruan & Jing Guo & Tuanyao Chai, 2019. "Land Subsidence in a Coal Mining Area Reduced Soil Fertility and Led to Soil Degradation in Arid and Semi-Arid Regions," IJERPH, MDPI, vol. 16(20), pages 1-14, October.
    6. Dayang Xuan & Jialin Xu, 2014. "Grout injection into bed separation to control surface subsidence during longwall mining under villages: case study of Liudian coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 883-906, September.
    7. Yaokun Fu & Jianxuan Shang & Zhenqi Hu & Pengyu Li & Kun Yang & Chao Chen & Jiaxin Guo & Dongzhu Yuan, 2021. "Ground Fracture Development and Surface Fracture Evolution in N00 Method Shallowly Buried Thick Coal Seam Mining in an Arid Windy and Sandy Area: A Case Study of the Ningtiaota Mine (China)," Energies, MDPI, vol. 14(22), pages 1-18, November.
    8. Krzysztof Skrzypkowski, 2021. "3D Numerical Modelling of the Application of Cemented Paste Backfill on Displacements around Strip Excavations," Energies, MDPI, vol. 14(22), pages 1-17, November.
    9. Jingjing Dai & Pengfei Shan & Qi Zhou, 2020. "Study on Intelligent Identification Method of Coal Pillar Stability in Fully Mechanized Caving Face of Thick Coal Seam," Energies, MDPI, vol. 13(2), pages 1-17, January.
    10. Ming Tao & Zhixian Hong & Kang Peng & Pengwei Sun & Mingyu Cao & Kun Du, 2019. "Evaluation of Excavation-Damaged Zone around Underground Tunnels by Theoretical Calculation and Field Test Methods," Energies, MDPI, vol. 12(9), pages 1-18, May.
    11. Cun Zhang & Xiaojie Wang & Shangxin Fang & Xutao Shi, 2022. "Construction and Application of VR-AR Teaching System in Coal-Based Energy Education," Sustainability, MDPI, vol. 14(23), pages 1-14, December.
    12. Lei Nie & Hongfei Wang & Yan Xu & Zechuang Li, 2015. "A new prediction model for mining subsidence deformation: the arc tangent function model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2185-2198, February.
    13. Jiu Huang & Chuyuan Tian & Longfei Xing & Zhengfu Bian & Xiexing Miao, 2017. "Green and Sustainable Mining: Underground Coal Mine Fully Mechanized Solid Dense Stowing-Mining Method," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    14. Jinshuai Guo & Liqiang Ma & Ye Wang & Fangtian Wang, 2017. "Hanging Wall Pressure Relief Mechanism of Horizontal Section Top-Coal Caving Face and Its Application—A Case Study of the Urumqi Coalfield, China," Energies, MDPI, vol. 10(9), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3139-:d:257967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.