IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1418-d107944.html
   My bibliography  Save this article

Green and Sustainable Mining: Underground Coal Mine Fully Mechanized Solid Dense Stowing-Mining Method

Author

Listed:
  • Jiu Huang

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
    State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Chuyuan Tian

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Longfei Xing

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Zhengfu Bian

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Xiexing Miao

    (State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

China produces and consumes most of coal in the world. This situation is expected to continue within a certain period in the future. Currently, Chinese coal industry is confronted with several serious problems relating to land resource, water resource, environmental, and ecological sustainability. Coal resource exploitation causes the permanent fracture and movement of strata structure, which have caused the fracture and collapse of overlying strata and further led to the subsidence of ground surface as well as the seepage of water in aquifers around the coal seam, which has resulted not only in the loss of land and water resources, but also in serious threats and accidents to underground mining. On the other hand, mining and mineral-processing wastes are one of the world’s long plagued concerns among solid wastes. Coal gangue, as the major waste with a huge amount of discharge, has not only occupied the land, but has also contaminated the ambient land resources and hydrological environment, and further led to ecological system destruction and degradation. What is more, in China there are large amounts of coal—located under railways, buildings, and water bodies—which are unavailable with traditional mining methods. These problems are obviously threaten the concept of green sustainable development. This paper introduces a novel developed solid dense stowing mining method, which is able to significantly reduce or event eliminate the corresponding damages caused by underground mining behavior and realize green and sustainable development. The novelty of this research work is realizing the automation and synchronization of mining and material stowing with an appropriate compaction ratio for adequate support of goaf roof. It can improve the stability of rock strata and the safety and efficiency of underground mining. We also studied and designed a perfect stowing material by using coal gangue and fly ash with appropriate proportions under different particle size gradations. By implementation of the above-mentioned methods in China, the solid dense stowing rate of mined seam areas have reached more than 95% and the overburden strata movements have been reduced to extremely low level which had nearly no damages to above buildings. The solid dense stowing mining method has also realized the reuse and recycling of coal mine solid wastes. Meanwhile, considerable previously unavailable coal resources under buildings, railways, and water bodies have been made available for exploration, which could extend the life of coal mines and increase the sustainability for coal industry and the environment. Ultimately, this method is a reliable way to realize green and sustainable mining. The strata structure protection, the surface subsidence prevention, and coal mine solid waste disposal have been realized at the same time.

Suggested Citation

  • Jiu Huang & Chuyuan Tian & Longfei Xing & Zhengfu Bian & Xiexing Miao, 2017. "Green and Sustainable Mining: Underground Coal Mine Fully Mechanized Solid Dense Stowing-Mining Method," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1418-:d:107944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dabo Guan & Stephan Klasen & Klaus Hubacek & Kuishuang Feng & Zhu Liu & Kebin He & Yong Geng & Qiang Zhang, 2014. "Determinants of stagnating carbon intensity in China," Nature Climate Change, Nature, vol. 4(11), pages 1017-1023, November.
    2. Lee Liu & Jie Liu & Zhenguo Zhang, 2014. "Environmental Justice and Sustainability Impact Assessment: In Search of Solutions to Ethnic Conflicts Caused by Coal Mining in Inner Mongolia, China," Sustainability, MDPI, vol. 6(12), pages 1-19, December.
    3. Xiaowei Feng & Nong Zhang & Lianyuan Gong & Fei Xue & Xigui Zheng, 2015. "Application of a Backfilling Method in Coal Mining to Realise an Ecologically Sensitive “Black Gold” Industry," Energies, MDPI, vol. 8(5), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaojun Zhu & Feng Zha & Hua Cheng & Liugen Zheng & Hui Liu & Wenshan Huang & Yu Yan & Liangjun Dai & Shenzhu Fang & Xiaoyu Yang, 2022. "Spatial Pattern Reconstruction of Water and Land Resources in Coal Mining Subsidence Areas within Urban Regions," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    2. Honglei Liu & Qiang Wu & Jianxin Chen & Mingjun Wang & Di Zhao & Cheng Duan, 2021. "Environmental Impacts Related to Closed Mines in Inner Mongolia," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    3. Jiu Huang & Peng Wang & Chaorong Xu & Zhuangzhuang Zhu, 2018. "Fly Ash Modified Coalmine Solid Wastes for Stabilization of Trace Metals in Mining Damaged Land Reclamation: A Case Study in Xuzhou Coalmine Area," IJERPH, MDPI, vol. 15(10), pages 1-23, October.
    4. Deyu Qian & Nong Zhang & Dongjiang Pan & Zhengzheng Xie & Hideki Shimada & Yang Wang & Chenghao Zhang & Nianchao Zhang, 2017. "Stability of Deep Underground Openings through Large Fault Zones in Argillaceous Rock," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    5. Yao Lu & Ning Jiang & Wei Lu & Meng Zhang & Dezhi Kong & Mengtang Xu & Changxiang Wang, 2022. "Experimental Study on Deformation Characteristics of Gangue Backfill Zone under the Condition of Natural Water in Deep Mines," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    6. Wenbing Guo & Mingjie Guo & Yi Tan & Erhu Bai & Gaobo Zhao, 2019. "Sustainable Development of Resources and the Environment: Mining-Induced Eco-Geological Environmental Damage and Mitigation Measures—A Case Study in the Henan Coal Mining Area, China," Sustainability, MDPI, vol. 11(16), pages 1-34, August.
    7. Marat M. Khayrutdinov & Vladimir I. Golik & Alexander V. Aleksakhin & Ekaterina V. Trushina & Natalia V. Lazareva & Yulia V. Aleksakhina, 2022. "Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining," Resources, MDPI, vol. 11(10), pages 1-16, September.
    8. Zhiyi Zhang & Hideki Shimada & Takashi Sasaoka & Akihiro Hamanaka, 2017. "Stability Control of Retained Goaf-Side Gateroad under Different Roof Conditions in Deep Underground Y Type Longwall Mining," Sustainability, MDPI, vol. 9(10), pages 1-19, September.
    9. Meng Li & Jixiong Zhang & Kai Quan & Nan Zhou, 2017. "Innovative Extraction Method for a Coal Seam with a Thick Rock-Parting for Supporting Coal Mine Sustainability," Sustainability, MDPI, vol. 9(11), pages 1-13, October.
    10. Shiyong Sun & Hui Sun & Deshun Zhang & Jianfeng Zhang & Zeyu Cai & Guanghua Qin & Yumin Song, 2019. "Response of Soil Microbes to Vegetation Restoration in Coal Mining Subsidence Areas at Huaibei Coal Mine, China," IJERPH, MDPI, vol. 16(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dikau, Simon & Volz, Ulrich, 2021. "Out of the window? Green monetary policy in China: window guidance and the promotion of sustainable lending and investment," LSE Research Online Documents on Economics 111489, London School of Economics and Political Science, LSE Library.
    2. Du, Mingxi & Wang, Xiaoge & Peng, Changhui & Shan, Yuli & Chen, Huai & Wang, Meng & Zhu, Qiuan, 2018. "Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025," Applied Energy, Elsevier, vol. 225(C), pages 869-875.
    3. Peng Gong & Zhanguo Ma & Xiaoyan Ni & Ray Ruichong Zhang, 2017. "Floor Heave Mechanism of Gob-Side Entry Retaining with Fully-Mechanized Backfilling Mining," Energies, MDPI, vol. 10(12), pages 1-19, December.
    4. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    5. Bing Xue & Mario Tobias, 2015. "Sustainability in China: Bridging Global Knowledge with Local Action," Sustainability, MDPI, vol. 7(4), pages 1-7, March.
    6. Zhang, Lixiao & Yang, Min & Zhang, Pengpeng & Hao, Yan & Lu, Zhongming & Shi, Zhimin, 2021. "De-coal process in urban China: What can we learn from Beijing's experience?," Energy, Elsevier, vol. 230(C).
    7. Mingyue Wang & Yu Liu & Yawen Liu & Shunxiang Yang & Lingyu Yang, 2018. "Assessing Multiple Pathways for Achieving China’s National Emissions Reduction Target," Sustainability, MDPI, vol. 10(7), pages 1-16, June.
    8. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    9. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Characterizing the Influences of Economic Development, Energy Consumption, Urbanization, Industrialization, and Vehicles Amount on PM 2.5 Concentrations of China," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    10. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Bin Zhang & Jiacheng Ye & Zhongjian Zhang & Liang Xu & Nengxiong Xu, 2019. "A Comprehensive Method for Subsidence Prediction on Two-Seam Longwall Mining," Energies, MDPI, vol. 12(16), pages 1-18, August.
    12. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.
    13. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    14. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    15. Guangdong Li, 2019. "Spatiotemporal Dynamics of Ecological Total-Factor Energy Efficiency and Their Drivers in China at the Prefecture Level," IJERPH, MDPI, vol. 16(18), pages 1-23, September.
    16. Qipeng Sun & Yafang Geng & Fei Ma & Chao Wang & Bo Wang & Xiu Wang & Wenlin Wang, 2018. "Spatial–Temporal Evolution and Factor Decomposition for Ecological Pressure of Carbon Footprint in the One Belt and One Road," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    17. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    18. Peng Zhang & Maosheng Duan & Guangzhi Yin, 2018. "The Periodic Characteristics of China’s Economic Carbon Intensity Change and the Impacts of Economic Transformation," Energies, MDPI, vol. 11(4), pages 1-21, April.
    19. Wang, Linhui & Chen, Qi & Dong, Zhiqing & Cheng, Lu, 2024. "The role of industrial intelligence in peaking carbon emissions in China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    20. Xianwei Liu & Yang Zou & Jianping Wu, 2018. "Factors Influencing Public-Sphere Pro-Environmental Behavior among Mongolian College Students: A Test of Value–Belief–Norm Theory," Sustainability, MDPI, vol. 10(5), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1418-:d:107944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.