IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2910-d252600.html
   My bibliography  Save this article

Algorithm to Determine the Knee Point on Capacity Fade Curves of Lithium-Ion Cells

Author

Listed:
  • Weiping Diao

    (Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA)

  • Saurabh Saxena

    (Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA)

  • Bongtae Han

    (Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA)

  • Michael Pecht

    (Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA)

Abstract

Lithium-ion batteries typically exhibit a transition to a more rapid capacity fade trend when subjected to extended charge–discharge cycles and storage conditions. The identification of the knee point can be valuable to identify the more severe degradation trend, and to provide guidance when scheduling battery replacements and planning secondary uses of the battery. However, a concise and repeatable determination of a knee point has not been documented. This paper provides a definition of the knee point which can be used as a degradation metric, and develops an algorithm to identify it. The algorithm is implemented on various data cases, and the results indicate that the approach provides repeatable knee point identification.

Suggested Citation

  • Weiping Diao & Saurabh Saxena & Bongtae Han & Michael Pecht, 2019. "Algorithm to Determine the Knee Point on Capacity Fade Curves of Lithium-Ion Cells," Energies, MDPI, vol. 12(15), pages 1-9, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2910-:d:252600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diao, Weiping & Xue, Nan & Bhattacharjee, Vikram & Jiang, Jiuchun & Karabasoglu, Orkun & Pecht, Michael, 2018. "Active battery cell equalization based on residual available energy maximization," Applied Energy, Elsevier, vol. 210(C), pages 690-698.
    2. Xuebing Han & Minggao Ouyang & Languang Lu & Jianqiu Li, 2014. "Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles," Energies, MDPI, vol. 7(8), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calum Strange & Shawn Li & Richard Gilchrist & Gonçalo dos Reis, 2021. "Elbows of Internal Resistance Rise Curves in Li-Ion Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. Weiping Diao & Chetan Kulkarni & Michael Pecht, 2021. "Development of an Informative Lithium-Ion Battery Datasheet," Energies, MDPI, vol. 14(17), pages 1-19, September.
    3. Wang, Cong & Chen, Yunxia, 2024. "Unsupervised dynamic prognostics for abnormal degradation of lithium-ion battery," Applied Energy, Elsevier, vol. 365(C).
    4. Lv, Haichao & Kang, Lixia & Liu, Yongzhong, 2023. "Analysis of strategies to maximize the cycle life of lithium-ion batteries based on aging trajectory prediction," Energy, Elsevier, vol. 275(C).
    5. Gomez, William & Wang, Fu-Kwun & Chou, Jia-Hong, 2024. "Li-ion battery capacity prediction using improved temporal fusion transformer model," Energy, Elsevier, vol. 296(C).
    6. Calum Strange & Rasheed Ibraheem & Gonçalo dos Reis, 2023. "Online Lifetime Prediction for Lithium-Ion Batteries with Cycle-by-Cycle Updates, Variance Reduction, and Model Ensembling," Energies, MDPI, vol. 16(7), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rogers, Daniel J. & Aslett, Louis J.M. & Troffaes, Matthias C.M., 2021. "Modelling of modular battery systems under cell capacity variation and degradation," Applied Energy, Elsevier, vol. 283(C).
    2. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    3. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    4. Bhattacharjee, Vikram & Khan, Irfan, 2018. "A non-linear convex cost model for economic dispatch in microgrids," Applied Energy, Elsevier, vol. 222(C), pages 637-648.
    5. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    6. Liu, Sijia & Winter, Michaela & Lewerenz, Meinert & Becker, Jan & Sauer, Dirk Uwe & Ma, Zeyu & Jiang, Jiuchun, 2019. "Analysis of cyclic aging performance of commercial Li4Ti5O12-based batteries at room temperature," Energy, Elsevier, vol. 173(C), pages 1041-1053.
    7. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    8. Shixin Song & Feng Xiao & Silun Peng & Chuanxue Song & Yulong Shao, 2018. "A High-Efficiency Bidirectional Active Balance for Electric Vehicle Battery Packs Based on Model Predictive Control," Energies, MDPI, vol. 11(11), pages 1-24, November.
    9. Wojciech Kurpiel & Przemysław Deja & Bartosz Polnik & Marcin Skóra & Bogdan Miedziński & Marcin Habrych & Grzegorz Debita & Monika Zamłyńska & Przemysław Falkowski-Gilski, 2021. "Performance of Passive and Active Balancing Systems of Lithium Batteries in Onerous Mine Environment," Energies, MDPI, vol. 14(22), pages 1-15, November.
    10. Fan, Feilong & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Hu, Yan & Ma, Zhoujun, 2018. "A conditional depreciation balancing strategy for the equitable operation of extended hybrid energy storage systems," Applied Energy, Elsevier, vol. 228(C), pages 1937-1952.
    11. Wen, Jianping & Chen, Xing & Li, Xianghe & Li, Yikun, 2022. "SOH prediction of lithium battery based on IC curve feature and BP neural network," Energy, Elsevier, vol. 261(PA).
    12. Yashraj Tripathy & Andrew McGordon & Chee Tong John Low, 2018. "A New Consideration for Validating Battery Performance at Low Ambient Temperatures," Energies, MDPI, vol. 11(9), pages 1-16, September.
    13. An, Fulai & Zhang, Weige & Sun, Bingxiang & Jiang, Jiuchun & Fan, Xinyuan, 2023. "A novel battery pack inconsistency model and influence degree analysis of inconsistency on output energy," Energy, Elsevier, vol. 271(C).
    14. Philipp Glücker & Klaus Kivekäs & Jari Vepsäläinen & Panagiotis Mouratidis & Maximilian Schneider & Stephan Rinderknecht & Kari Tammi, 2021. "Prolongation of Battery Lifetime for Electric Buses through Flywheel Integration," Energies, MDPI, vol. 14(4), pages 1-19, February.
    15. Chein-Chung Sun & Chun-Hung Chou & Yu-Liang Lin & Yu-Hua Huang, 2022. "A Cost-Effective Passive/Active Hybrid Equalizer Circuit Design," Energies, MDPI, vol. 15(6), pages 1-20, March.
    16. Li, Penghua & Liu, Jianfei & Deng, Zhongwei & Yang, Yalian & Lin, Xianke & Couture, Jonathan & Hu, Xiaosong, 2022. "Increasing energy utilization of battery energy storage via active multivariable fusion-driven balancing," Energy, Elsevier, vol. 243(C).
    17. Yunfeng Jiang & Louis J. Shrinkle & Raymond A. de Callafon, 2019. "Autonomous Demand-Side Current Scheduling of Parallel Buck Regulated Battery Modules," Energies, MDPI, vol. 12(11), pages 1-20, May.
    18. Fan, Xinyuan & Zhang, Weige & Sun, Bingxiang & Zhang, Junwei & He, Xitian, 2022. "Battery pack consistency modeling based on generative adversarial networks," Energy, Elsevier, vol. 239(PE).
    19. Koh, S.C.L. & Smith, L. & Miah, J. & Astudillo, D. & Eufrasio, R.M. & Gladwin, D. & Brown, S. & Stone, D., 2021. "Higher 2nd life Lithium Titanate battery content in hybrid energy storage systems lowers environmental-economic impact and balances eco-efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Xiaogang Wu & Zhihao Cui & Xuefeng Li & Jiuyu Du & Ye Liu, 2019. "Control Strategy for Active Hierarchical Equalization Circuits of Series Battery Packs," Energies, MDPI, vol. 12(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2910-:d:252600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.