Li-ion battery capacity prediction using improved temporal fusion transformer model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131114
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
- Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
- Weiping Diao & Saurabh Saxena & Bongtae Han & Michael Pecht, 2019. "Algorithm to Determine the Knee Point on Capacity Fade Curves of Lithium-Ion Cells," Energies, MDPI, vol. 12(15), pages 1-9, July.
- Lin, Mingqiang & Wu, Jian & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "State of health estimation with attentional long short-term memory network for lithium-ion batteries," Energy, Elsevier, vol. 268(C).
- Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
- Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
- Calum Strange & Shawn Li & Richard Gilchrist & Gonçalo dos Reis, 2021. "Elbows of Internal Resistance Rise Curves in Li-Ion Cells," Energies, MDPI, vol. 14(4), pages 1-15, February.
- Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
- Chen, Liping & Xie, Siqiang & Lopes, António M. & Li, Huafeng & Bao, Xinyuan & Zhang, Chaolong & Li, Penghua, 2024. "A new SOH estimation method for Lithium-ion batteries based on model-data-fusion," Energy, Elsevier, vol. 286(C).
- Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Shang, Zuogang & Yan, Ruqiang & Chen, Xuefeng, 2023. "Explainability-driven model improvement for SOH estimation of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Wanjie & Ding, Wei & Zhang, Shujing & Zhang, Zhen, 2024. "Enhancing lithium-ion battery lifespan early prediction using a multi-branch vision transformer model," Energy, Elsevier, vol. 302(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
- Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
- Lv, Haichao & Kang, Lixia & Liu, Yongzhong, 2023. "Analysis of strategies to maximize the cycle life of lithium-ion batteries based on aging trajectory prediction," Energy, Elsevier, vol. 275(C).
- Fujin Wang & Zhi Zhai & Zhibin Zhao & Yi Di & Xuefeng Chen, 2024. "Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Wei, Meng & Ye, Min & Zhang, Chuanwei & Li, Yan & Zhang, Jiale & Wang, Qiao, 2023. "A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling," Energy, Elsevier, vol. 283(C).
- Wang, Cong & Chen, Yunxia, 2024. "Unsupervised dynamic prognostics for abnormal degradation of lithium-ion battery," Applied Energy, Elsevier, vol. 365(C).
- Wei, Meng & Ye, Min & Zhang, Chuanwei & Wang, Qiao & Lian, Gaoqi & Xia, Baozhou, 2024. "Integrating mechanism and machine learning based capacity estimation for LiFePO4 batteries under slight overcharge cycling," Energy, Elsevier, vol. 296(C).
- Liu, Chenghao & Deng, Zhongwei & Zhang, Xiaohong & Bao, Huanhuan & Cheng, Duanqian, 2024. "Battery state of health estimation across electrochemistry and working conditions based on domain adaptation," Energy, Elsevier, vol. 297(C).
- Ibraheem, Rasheed & Wu, Yue & Lyons, Terry & dos Reis, Gonçalo, 2023. "Early prediction of Lithium-ion cell degradation trajectories using signatures of voltage curves up to 4-minute sub-sampling rates," Applied Energy, Elsevier, vol. 352(C).
- Calum Strange & Rasheed Ibraheem & Gonçalo dos Reis, 2023. "Online Lifetime Prediction for Lithium-Ion Batteries with Cycle-by-Cycle Updates, Variance Reduction, and Model Ensembling," Energies, MDPI, vol. 16(7), pages 1-14, April.
- Li, Fang & Min, Yongjun & Zhang, Ying & Zhang, Yong & Zuo, Hongfu & Bai, Fang, 2024. "State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Frederick Nsambu Kijjambu & Benjamin Musiita & Asaph Kaburura Katarangi & Geoffrey Kahangane & Sheilla Akampwera, 2023. "Determinants of Uganda’s Debt Sustainability: The Public Debt Dynamics Model in Perspective," Journal of Economics and Behavioral Studies, AMH International, vol. 15(4), pages 106-124.
- Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
- Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
- Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
- Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
- Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
More about this item
Keywords
Remaining useful life prediction; Improved temporal fusion transformer; Bidirectional long short-term memory; Tree-structure parzen estimator;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008867. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.