IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p731-d137769.html
   My bibliography  Save this article

Development of Offshore Wind Power: Contrasting Optimal Wind Sites with Legal Restrictions in Galicia, Spain

Author

Listed:
  • Santiago Salvador

    (Environmental Physics Laboratory, Universidade de Vigo, Campus As Lagoas s/n, 32004 Ourense, Spain)

  • Xurxo Costoya

    (CESAM, Physics Department, Universidade de Aveiro, Aveiro 3810-193, Portugal)

  • Francisco Javier Sanz-Larruga

    (Observatorio del Litoral de la Universidad de A Coruña, 15071 A Coruña, Spain)

  • Luis Gimeno

    (Environmental Physics Laboratory, Universidade de Vigo, Campus As Lagoas s/n, 32004 Ourense, Spain)

Abstract

The region of Galicia, in the northwest of the Iberian Peninsula, has a high wind potential for the installation of offshore wind farms (OWFs) in many areas of its surrounding marine waters. However, legal restrictions derived from the protection of other interests that converge in the marine environment (such as fishing, navigation, and biodiversity conservation) must be considered, along with technical limitations resulting from water depth. This study is aimed at analysing legal restrictions on the installation of OWFs in Galician waters and at identifying those zones of less conflict where the wind power density (WPD) is greater and the depths and distances from the coast are technically feasible given the current status of technology in Europe. To do this, a legal study was performed of both the strategic environmental assessment of the Spanish coast and the regulations of the different marine sectors at European, international, national, and regional levels. In addition, the WPD along the north-western area of the Iberian Peninsula and Europe was calculated, and an analysis of maximum and average depths and distances from the coast of planned and installed OWFs in Europe was made. Two main zones without legal and technical restrictions were identified in the north-eastern corner of Galicia and in the south of the Vigo estuary. The greatest WPD was identified in the north-western zone, from Cape Finisterre to Cape Ortegal, where there are small sites without legal or technical restrictions that are near several protected zones (such as a marine reserve, a special protected area, and a wetland and its buffer zone), making necessary a deeper analysis of the specific impacts of each OWF project in the Environmental Impact Assessment.

Suggested Citation

  • Santiago Salvador & Xurxo Costoya & Francisco Javier Sanz-Larruga & Luis Gimeno, 2018. "Development of Offshore Wind Power: Contrasting Optimal Wind Sites with Legal Restrictions in Galicia, Spain," Energies, MDPI, vol. 11(4), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:731-:d:137769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marian Stuiver & Katrine Soma & Phoebe Koundouri & Sander Van den Burg & Alwin Gerritsen & Thorbjørn Harkamp & Niels Dalsgaard & Fabio Zagonari & Raul Guanche & Jan-Joost Schouten & Saskia Hommes & Am, 2016. "The Governance of Multi-Use Platforms at Sea for Energy Production and Aquaculture: Challenges for Policy Makers in European Seas," Sustainability, MDPI, vol. 8(4), pages 1-19, April.
    2. Kalogeri, Christina & Galanis, George & Spyrou, Christos & Diamantis, Dimitris & Baladima, Foteini & Koukoula, Marika & Kallos, George, 2017. "Assessing the European offshore wind and wave energy resource for combined exploitation," Renewable Energy, Elsevier, vol. 101(C), pages 244-264.
    3. Toke, David, 2011. "The UK offshore wind power programme: A sea-change in UK energy policy?," Energy Policy, Elsevier, vol. 39(2), pages 526-534, February.
    4. Snyder, Brian & Kaiser, Mark J., 2009. "Offshore wind power in the US: Regulatory issues and models for regulation," Energy Policy, Elsevier, vol. 37(11), pages 4442-4453, November.
    5. Colmenar-Santos, Antonio & Perera-Perez, Javier & Borge-Diez, David & dePalacio-Rodríguez, Carlos, 2016. "Offshore wind energy: A review of the current status, challenges and future development in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 1-18.
    6. Shariat Torbaghan, Shahab & Müller, Hannah K. & Gibescu, Madeleine & van der Meijden, Mart & Roggenkamp, Martha, 2015. "The legal and economic impacts of implementing a joint feed-in premium support scheme on the development of an offshore grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 263-277.
    7. Gibson, Emma & Howsam, Peter, 2010. "The legal framework for offshore wind farms: A critical analysis of the consents process," Energy Policy, Elsevier, vol. 38(8), pages 4692-4702, August.
    8. Khan, M.J. & Iqbal, M.T., 2004. "Wind energy resource map of Newfoundland," Renewable Energy, Elsevier, vol. 29(8), pages 1211-1221.
    9. Oscar Fitch-Roy, 2016. "An offshore wind union? Diversity and convergence in European offshore wind governance," Climate Policy, Taylor & Francis Journals, vol. 16(5), pages 586-605, July.
    10. Soares, Pedro M.M. & Lima, Daniela C.A. & Cardoso, Rita M. & Nascimento, Manuel L. & Semedo, Alvaro, 2017. "Western Iberian offshore wind resources: More or less in a global warming climate?," Applied Energy, Elsevier, vol. 203(C), pages 72-90.
    11. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    12. Paweł Ziemba & Jarosław Wątróbski & Magdalena Zioło & Artur Karczmarczyk, 2017. "Using the PROSA Method in Offshore Wind Farm Location Problems," Energies, MDPI, vol. 10(11), pages 1-20, November.
    13. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
    14. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    15. Yichao Liu & Daoyi Chen & Qian Yi & Sunwei Li, 2017. "Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part I: Wind Speed Profile Model," Energies, MDPI, vol. 10(1), pages 1-24, January.
    16. Mani, Swaminathan & Dhingra, Tarun, 2013. "Critique of offshore wind energy policies of the UK and Germany—What are the lessons for India," Energy Policy, Elsevier, vol. 63(C), pages 900-909.
    17. Portman, Michelle E. & Duff, John A. & Köppel, Johann & Reisert, Jessica & Higgins, Megan E., 2009. "Offshore wind energy development in the exclusive economic zone: Legal and policy supports and impediments in Germany and the US," Energy Policy, Elsevier, vol. 37(9), pages 3596-3607, September.
    18. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections," Renewable Energy, Elsevier, vol. 101(C), pages 29-40.
    19. Castro-Santos, Laura & Filgueira-Vizoso, Almudena & Carral-Couce, Luis & Formoso, José Ángel Fraguela, 2016. "Economic feasibility of floating offshore wind farms," Energy, Elsevier, vol. 112(C), pages 868-882.
    20. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula," Applied Energy, Elsevier, vol. 134(C), pages 57-64.
    21. Yichao Liu & Sunwei Li & Qian Yi & Daoyi Chen, 2017. "Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part II: Wave Spectrum Model," Energies, MDPI, vol. 10(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    2. Díaz, H. & Guedes Soares, C., 2022. "A novel multi-criteria decision-making model to evaluate floating wind farm locations," Renewable Energy, Elsevier, vol. 185(C), pages 431-454.
    3. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2020. "On the suitability of offshore wind energy resource in the United States of America for the 21st century," Applied Energy, Elsevier, vol. 262(C).
    5. Costoya, X. & deCastro, M. & Carvalho, D. & Arguilé-Pérez, B. & Gómez-Gesteira, M., 2022. "Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    7. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).
    8. Carreno-Madinabeitia, Sheila & Ibarra-Berastegi, Gabriel & Sáenz, Jon & Ulazia, Alain, 2021. "Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010)," Energy, Elsevier, vol. 226(C).
    9. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
    10. Costoya, X. & Rocha, A. & Carvalho, D., 2020. "Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvador, Santiago & Gimeno, Luis & Sanz Larruga, F. Javier, 2019. "The influence of maritime spatial planning on the development of marine renewable energies in Portugal and Spain: Legal challenges and opportunities," Energy Policy, Elsevier, vol. 128(C), pages 316-328.
    2. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Costoya, X. & Rocha, A. & Carvalho, D., 2020. "Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula," Applied Energy, Elsevier, vol. 262(C).
    4. González, Mario Orestes Aguirre & Santiso, Andressa Medeiros & Melo, David Cassimiro de & Vasconcelos, Rafael Monteiro de, 2020. "Regulation for offshore wind power development in Brazil," Energy Policy, Elsevier, vol. 145(C).
    5. Costoya, X. & deCastro, M. & Carvalho, D. & Arguilé-Pérez, B. & Gómez-Gesteira, M., 2022. "Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Laura Castro-Santos & Maite deCastro & Xurxo Costoya & Almudena Filgueira-Vizoso & Isabel Lamas-Galdo & Americo Ribeiro & João M. Dias & Moncho Gómez-Gesteira, 2021. "Economic Feasibility of Floating Offshore Wind Farms Considering Near Future Wind Resources: Case Study of Iberian Coast and Bay of Biscay," IJERPH, MDPI, vol. 18(5), pages 1-16, March.
    7. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.
    8. Andrés Ruiz & Florin Onea & Eugen Rusu, 2020. "Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore," Energies, MDPI, vol. 13(18), pages 1-25, September.
    9. Santos, F. & Gómez-Gesteira, M. & deCastro, M. & Añel, J.A. & Carvalho, D. & Costoya, Xurxo & Dias, J.M., 2018. "On the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding ocean," Applied Energy, Elsevier, vol. 228(C), pages 289-300.
    10. Santiago Salvador & Marta Chantal Ribeiro, 2023. "Socio‐economic, legal, and political context of offshore renewable energies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    11. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    12. Rusu, Liliana, 2019. "The wave and wind power potential in the western Black Sea," Renewable Energy, Elsevier, vol. 139(C), pages 1146-1158.
    13. Hugo Díaz & Carlos Guedes Soares, 2021. "A Multi-Criteria Approach to Evaluate Floating Offshore Wind Farms Siting in the Canary Islands (Spain)," Energies, MDPI, vol. 14(4), pages 1-18, February.
    14. Hongyun Zhang & Michael G. Pollitt, 2023. "Comparison of policy instruments in the development process of offshore wind power in North Sea countries," Working Papers EPRG2323, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    15. Olaofe, Z.O., 2019. "Quantification of the near-surface wind conditions of the African coast: A comparative approach (satellite, NCEP CFSR and WRF-based)," Energy, Elsevier, vol. 189(C).
    16. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    17. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
    18. Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    20. Toonen, Hilde M. & Lindeboom, Han J., 2015. "Dark green electricity comes from the sea: Capitalizing on ecological merits of offshore wind power?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1023-1033.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:731-:d:137769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.