Assessment of the Condition of Pipelines Using Convolutional Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yingjie Xia & Chuanqing Zhang & Hui Zhou & Chunsheng Zhang & Wangbing Hong, 2019. "Mechanical Anisotropy and Failure Characteristics of Columnar Jointed Rock Masses (CJRM) in Baihetan Hydropower Station: Structural Considerations Based on Digital Image Processing Technology," Energies, MDPI, vol. 12(19), pages 1-24, September.
- Nicolas Pinto & David D Cox & James J DiCarlo, 2008. "Why is Real-World Visual Object Recognition Hard?," PLOS Computational Biology, Public Library of Science, vol. 4(1), pages 1-6, January.
- Peng Qian & Xiange Tian & Jamil Kanfoud & Joash Lap Yan Lee & Tat-Hean Gan, 2019. "A Novel Condition Monitoring Method of Wind Turbines Based on Long Short-Term Memory Neural Network," Energies, MDPI, vol. 12(18), pages 1-15, September.
- Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
- Feng Gao & Xiaojiang Wu & Qiang Liu & Juncheng Liu & Xiyun Yang, 2019. "Fault Simulation and Online Diagnosis of Blade Damage of Large-Scale Wind Turbines," Energies, MDPI, vol. 12(3), pages 1-16, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wan Zhang & Ruihao Shen & Ning Xu & Haoran Zhang & Yongtu Liang, 2020. "Study on Optimization of Active Control Schemes for Considering Transient Processes in the Case of Pipeline Leakage," Energies, MDPI, vol. 13(7), pages 1-16, April.
- Dariusz Bęben & Teresa Steliga, 2023. "Monitoring and Preventing Failures of Transmission Pipelines at Oil and Natural Gas Plants," Energies, MDPI, vol. 16(18), pages 1-19, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
- Pavel Škrabánek & Alexandra Zahradníková jr., 2019. "Automatic assessment of the cardiomyocyte development stages from confocal microscopy images using deep convolutional networks," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-18, May.
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
- Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Xiaofu He & Zhiyong Yang & Joe Z Tsien, 2011. "A Hierarchical Probabilistic Model for Rapid Object Categorization in Natural Scenes," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-15, May.
- Dileep George & Jeff Hawkins, 2009. "Towards a Mathematical Theory of Cortical Micro-circuits," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-26, October.
- Hongwei Li & Kaide Ren & Shuaibing Li & Haiying Dong, 2020. "Adaptive Multi-Model Switching Predictive Active Power Control Scheme for Wind Generator System," Energies, MDPI, vol. 13(6), pages 1-12, March.
- Ravi Kumar Pandit & Davide Astolfi & Isidro Durazo Cardenas, 2023. "A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Qianli Yang & Edgar Walker & R. James Cotton & Andreas S. Tolias & Xaq Pitkow, 2021. "Revealing nonlinear neural decoding by analyzing choices," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
- Sebastian Bach & Alexander Binder & Grégoire Montavon & Frederick Klauschen & Klaus-Robert Müller & Wojciech Samek, 2015. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-46, July.
- Pedro Malaca & Luis F. Rocha & D. Gomes & João Silva & Germano Veiga, 2019. "Online inspection system based on machine learning techniques: real case study of fabric textures classification for the automotive industry," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 351-361, January.
- Jyh-Cherng Gu & Chun-Hung Liu & Kai-Ying Chou & Ming-Ta Yang, 2019. "Research on CBM of the Intelligent Substation SCADA System," Energies, MDPI, vol. 12(20), pages 1-22, October.
- Yolanda Vidal, 2023. "Artificial Intelligence for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 16(4), pages 1-4, February.
- Francesco Castellani & Luigi Garibaldi & Alessandro Paolo Daga & Davide Astolfi & Francesco Natili, 2020. "Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements," Energies, MDPI, vol. 13(6), pages 1-18, March.
- Andre S. Barcelos & Antonio J. Marques Cardoso, 2021. "Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-14, April.
- Mahsa Dehghan Manshadi & Majid Ghassemi & Seyed Milad Mousavi & Amir H. Mosavi & Levente Kovacs, 2021. "Predicting the Parameters of Vortex Bladeless Wind Turbine Using Deep Learning Method of Long Short-Term Memory," Energies, MDPI, vol. 14(16), pages 1-17, August.
- Hailay Hagos Entahabu & Amare Sewnet Minale & Emiru Birhane, 2023. "Modeling and Predicting Land Use/Land Cover Change Using the Land Change Modeler in the Suluh River Basin, Northern Highlands of Ethiopia," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
- Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.
More about this item
Keywords
pipelines; defect; diagnostics; convolutional neural network; binary classification; computational experiment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:618-:d:315227. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.