IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1371-d221281.html
   My bibliography  Save this article

A Non-Intrusive Load Monitoring Algorithm Based on Non-Uniform Sampling of Power Data and Deep Neural Networks

Author

Listed:
  • Marco Fagiani

    (Department of Information Engineering (DII), Università Politecnica delle Marche, Via Brecce Bianche 1, 60131 Ancona, Italy)

  • Roberto Bonfigli

    (Research and Development Area, MAC Srl, Via XX Settembre 23, 62019 Recanati (MC), Italy)

  • Emanuele Principi

    (Department of Information Engineering (DII), Università Politecnica delle Marche, Via Brecce Bianche 1, 60131 Ancona, Italy)

  • Stefano Squartini

    (Department of Information Engineering (DII), Università Politecnica delle Marche, Via Brecce Bianche 1, 60131 Ancona, Italy)

  • Luigi Mandolini

    (Research and Development Area, MAC Srl, Via XX Settembre 23, 62019 Recanati (MC), Italy)

Abstract

Nowadays, measurement systems strongly rely on the Internet of Things paradigm, and typically involve miniaturized devices on purpose. In these devices, the computational resources and signal acquisition rates are limited in order to preserve battery life. In addition, the amount of streamed data is affected by the network capacity strictly related to the transmission protocol constraints and the environmental conditions. All those limitations are in contrast with the need of exploiting all possible signal details for the task under study. In the specific application of interest, i.e., Non-Intrusive Load Monitoring (NILM), they could lead to low performance in the energy disaggregation process. To overcome these issues, an ad hoc data reduction policy needs to be adopted, in order to reduce the acquisition and elaboration burden of the device, and, at the same time, to ensure compliance with network bandwidth limits while maintaining a reliable signal representation. Moved by these motivations, an extended evaluation study concerning the application of data reduction strategy to the aggregate signal is presented in this work. In particular, a non-uniform subsampling (NUS) scheme is defined together with a uniform subsampling (US) strategy and compared, in terms of disaggregation performance, with the use of data at original sampling (OS) rate. A Deep Learning based technique is used for disaggregation, having the aggregate active power signal sampled according to diverse sampling schema mentioned above as input. The approaches are tested on the UK-DALE and REDD datasets, and the combination of US+NUS configurations allows for achieving a good performance in terms of F 1 -score, even superior than the one obtained with the OS rate, and a remarkable data reduction at the same time.

Suggested Citation

  • Marco Fagiani & Roberto Bonfigli & Emanuele Principi & Stefano Squartini & Luigi Mandolini, 2019. "A Non-Intrusive Load Monitoring Algorithm Based on Non-Uniform Sampling of Power Data and Deep Neural Networks," Energies, MDPI, vol. 12(7), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1371-:d:221281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1371/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wesley Angelino de Souza & Fernando Deluno Garcia & Fernando Pinhabel Marafão & Luiz Carlos Pereira da Silva & Marcelo Godoy Simões, 2019. "Load Disaggregation Using Microscopic Power Features and Pattern Recognition," Energies, MDPI, vol. 12(14), pages 1-18, July.
    2. Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili, 2022. "Non-Intrusive Load Monitoring of Household Devices Using a Hybrid Deep Learning Model through Convex Hull-Based Data Selection," Energies, MDPI, vol. 15(3), pages 1-22, February.
    3. Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
    4. Patrick Huber & Alberto Calatroni & Andreas Rumsch & Andrew Paice, 2021. "Review on Deep Neural Networks Applied to Low-Frequency NILM," Energies, MDPI, vol. 14(9), pages 1-34, April.
    5. Ying Zhang & Bo Yin & Yanping Cong & Zehua Du, 2020. "Multi-State Household Appliance Identification Based on Convolutional Neural Networks and Clustering," Energies, MDPI, vol. 13(4), pages 1-12, February.
    6. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    7. Alexandre Lucas & Luca Jansen & Nikoleta Andreadou & Evangelos Kotsakis & Marcelo Masera, 2019. "Load Flexibility Forecast for DR Using Non-Intrusive Load Monitoring in the Residential Sector," Energies, MDPI, vol. 12(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1371-:d:221281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.