IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1797-d230344.html
   My bibliography  Save this article

A Novel Nonintrusive Load Monitoring Approach based on Linear-Chain Conditional Random Fields

Author

Listed:
  • Hui He

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    These authors contributed equally to this work.)

  • Zixuan Liu

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    These authors contributed equally to this work.)

  • Runhai Jiao

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Guangwei Yan

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

In a real interactive service system, a smart meter can only read the total amount of energy consumption rather than analyze the internal load components for users. Nonintrusive load monitoring (NILM), as a vital part of smart power utilization techniques, can provide load disaggregation information, which can be further used for optimal energy use. In our paper, we introduce a new method called linear-chain conditional random fields (CRFs) for NILM and combine two promising features: current signals and real power measurements. The proposed method relaxes the independent assumption and avoids the label bias problem. Case studies on two open datasets showed that the proposed method can efficiently identify multistate appliances and detect appliances that are not easily identified by other models.

Suggested Citation

  • Hui He & Zixuan Liu & Runhai Jiao & Guangwei Yan, 2019. "A Novel Nonintrusive Load Monitoring Approach based on Linear-Chain Conditional Random Fields," Energies, MDPI, vol. 12(9), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1797-:d:230344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kofi Afrifa Agyeman & Sekyung Han & Soohee Han, 2015. "Real-Time Recognition Non-Intrusive Electrical Appliance Monitoring Algorithm for a Residential Building Energy Management System," Energies, MDPI, vol. 8(9), pages 1-20, August.
    2. Kwok Tai Chui & Miltiadis D. Lytras & Anna Visvizi, 2018. "Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption," Energies, MDPI, vol. 11(11), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wesley Angelino de Souza & Fernando Deluno Garcia & Fernando Pinhabel Marafão & Luiz Carlos Pereira da Silva & Marcelo Godoy Simões, 2019. "Load Disaggregation Using Microscopic Power Features and Pattern Recognition," Energies, MDPI, vol. 12(14), pages 1-18, July.
    2. Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
    3. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan Yigitcanlar & Kevin C. Desouza & Luke Butler & Farnoosh Roozkhosh, 2020. "Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature," Energies, MDPI, vol. 13(6), pages 1-38, March.
    2. Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    3. Abdelhamid Zaidi & Samuel-Soma M. Ajibade & Majd Musa & Festus Victor Bekun, 2023. "New Insights into the Research Landscape on the Application of Artificial Intelligence in Sustainable Smart Cities: A Bibliometric Mapping and Network Analysis Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 287-299, July.
    4. Jie Gao & Xinping Huang & Lili Zhang, 2019. "Comparative Analysis between International Research Hotspots and National-Level Policy Keywords on Artificial Intelligence in China from 2009 to 2018," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    5. Kim, Myung Ja & Hall, C. Michael & Kwon, Ohbyung & Sohn, Kwonsang, 2024. "Space tourism: Value-attitude-behavior theory, artificial intelligence, and sustainability," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    6. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
    7. Anabel Ortega-Fernández & Rodrigo Martín-Rojas & Víctor Jesús García-Morales, 2020. "Artificial Intelligence in the Urban Environment: Smart Cities as Models for Developing Innovation and Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    8. Andreea Loredana Bîrgovan & Elena Simina Lakatos & Andrea Szilagyi & Lucian Ionel Cioca & Roxana Lavinia Pacurariu & George Ciobanu & Elena Cristina Rada, 2022. "How Should We Measure? A Review of Circular Cities Indicators," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    9. Wesley Angelino de Souza & Fernando Deluno Garcia & Fernando Pinhabel Marafão & Luiz Carlos Pereira da Silva & Marcelo Godoy Simões, 2019. "Load Disaggregation Using Microscopic Power Features and Pattern Recognition," Energies, MDPI, vol. 12(14), pages 1-18, July.
    10. Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
    11. Ahteshamul Haq & Umar Muhammad Modibbo & Aquil Ahmed & Irfan Ali, 2022. "Mathematical modeling of sustainable development goals of India agenda 2030: a Neutrosophic programming approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11991-12018, October.
    12. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.
    13. Monika Wawer & Kalina Grzesiuk & Dorota Jegorow, 2022. "Smart Mobility in a Smart City in the Context of Generation Z Sustainability, Use of ICT, and Participation," Energies, MDPI, vol. 15(13), pages 1-30, June.
    14. Qian Wu & Fei Wang, 2019. "Concatenate Convolutional Neural Networks for Non-Intrusive Load Monitoring across Complex Background," Energies, MDPI, vol. 12(8), pages 1-17, April.
    15. Seunghwan Myeong & Khurram Shahzad, 2021. "Integrating Data-Based Strategies and Advanced Technologies with Efficient Air Pollution Management in Smart Cities," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    16. Ana De Las Heras & Amalia Luque-Sendra & Francisco Zamora-Polo, 2020. "Machine Learning Technologies for Sustainability in Smart Cities in the Post-COVID Era," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    17. Pengfei Zhou & Mengyu Han & Yang Shen, 2023. "Impact of Intelligent Manufacturing on Total-Factor Energy Efficiency: Mechanism and Improvement Path," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    18. Nadine Bachmann & Shailesh Tripathi & Manuel Brunner & Herbert Jodlbauer, 2022. "The Contribution of Data-Driven Technologies in Achieving the Sustainable Development Goals," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    19. Saeed Nosratabadi & Amir Mosavi & Ramin Keivani & Sina Ardabili & Farshid Aram, 2020. "State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainability," Papers 2010.02670, arXiv.org.
    20. Yueqiang Xu & Petri Ahokangas & Jean-Nicolas Louis & Eva Pongrácz, 2019. "Electricity Market Empowered by Artificial Intelligence: A Platform Approach," Energies, MDPI, vol. 12(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1797-:d:230344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.