IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p830-d210394.html
   My bibliography  Save this article

Hierarchical Multi-Objective Fuzzy Collaborative Optimization of Integrated Energy System under Off-Design Performance

Author

Listed:
  • Yongjie Zhong

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Hongwei Zhou

    (State Grid Jiangsu Electric Power Co., Ltd. Economic Research Institute, Nanjing 210008, China)

  • Xuanjun Zong

    (State Grid Jiangsu Electric Power Co., Ltd. Economic Research Institute, Nanjing 210008, China)

  • Zhou Xu

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Yonghui Sun

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

Abstract

In order to solve the frequently occurred nonlinear working characteristics problem of the devices in integrated energy system (IES), where this nonlinear problem causes the offset of operation characteristics and design points of those devices, in this paper, the hierarchical multi-objective fuzzy collaborative optimization model of IES under off-design performance is proposed. Firstly, the high-order nonlinear models of devices under off-design performance, including fuel cell (FC), gas turbine (GT), absorption lithium bromide chiller (ABS), etc., are presented considering renewable energy and diversified storage devices, which can more accurately describe the actual working condition of devices. Secondly, according to the needs of different engineering application modes, the lower level collaborative optimization model of energy hub (EH) with economic, eco-friendly, primary energy saving, and renewable energy accommodation rate as optimization objectives is proposed, which can well adapt to and reflect real world energy system. Thirdly, based on the relationship between master and slave dispatch centers, the upper level modeling and optimal scheduling model of IES consisting of coupling power system, natural gas system, and heat system is proposed. Then, a multi-objective fuzzy collaborative optimization model for EH and IES is developed, where continuous differentiable Sigmoid function is taken as the membership function. Finally, simulation results show that the proposed models and optimal dispatch method can effectively solve the frequently occurred non-linear working characteristics problem of the devices in IES. The optimal results are suitable for planning, calculation, operation, dispatch of IES, which can reasonably reflect the operation characteristics of IES.

Suggested Citation

  • Yongjie Zhong & Hongwei Zhou & Xuanjun Zong & Zhou Xu & Yonghui Sun, 2019. "Hierarchical Multi-Objective Fuzzy Collaborative Optimization of Integrated Energy System under Off-Design Performance," Energies, MDPI, vol. 12(5), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:830-:d:210394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lun Yang & Xia Zhao & Xinyi Li & Wei Yan, 2018. "Probabilistic Steady-State Operation and Interaction Analysis of Integrated Electricity, Gas and Heating Systems," Energies, MDPI, vol. 11(4), pages 1-21, April.
    2. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    3. Xianzheng Zhou & Chuangxin Guo & Yifei Wang & Wanqi Li, 2017. "Optimal Expansion Co-Planning of Reconfigurable Electricity and Natural Gas Distribution Systems Incorporating Energy Hubs," Energies, MDPI, vol. 10(1), pages 1-22, January.
    4. Li, HongQiang & Kang, ShuShuo & Yu, Zhun & Cai, Bo & Zhang, GuoQiang, 2014. "A feasible system integrating combined heating and power system with ground-source heat pump," Energy, Elsevier, vol. 74(C), pages 240-247.
    5. Thanh Tung Ha & Yongjun Zhang & Jinbao Hao & V. V. Thang & Canbing Li & Zexiang Cai, 2018. "Energy Hub’s Structural and Operational Optimization for Minimal Energy Usage Costs in Energy Systems," Energies, MDPI, vol. 11(4), pages 1-20, March.
    6. Gou, Xing & Chen, Qun & Hu, Kang & Ma, Huan & Chen, Lei & Wang, Xiao-Hai & Qi, Jun & Xu, Fei & Min, Yong, 2018. "Optimal planning of capacities and distribution of electric heater and heat storage for reduction of wind power curtailment in power systems," Energy, Elsevier, vol. 160(C), pages 763-773.
    7. Yongjie Zhong & Dongliang Xie & Suwei Zhai & Yonghui Sun, 2018. "Day-Ahead Hierarchical Steady State Optimal Operation for Integrated Energy System Based on Energy Hub," Energies, MDPI, vol. 11(10), pages 1-18, October.
    8. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Li, Xiaojing, 2017. "Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process," Applied Energy, Elsevier, vol. 194(C), pages 696-704.
    9. Ayele, Getnet Tadesse & Haurant, Pierrick & Laumert, Björn & Lacarrière, Bruno, 2018. "An extended energy hub approach for load flow analysis of highly coupled district energy networks: Illustration with electricity and heating," Applied Energy, Elsevier, vol. 212(C), pages 850-867.
    10. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    11. Jianfeng Li & Dongxiao Niu & Ming Wu & Yongli Wang & Fang Li & Huanran Dong, 2018. "Research on Battery Energy Storage as Backup Power in the Operation Optimization of a Regional Integrated Energy System," Energies, MDPI, vol. 11(11), pages 1-20, November.
    12. Jiyuan Kuang & Chenghui Zhang & Fan Li & Bo Sun, 2018. "Dynamic Optimization of Combined Cooling, Heating, and Power Systems with Energy Storage Units," Energies, MDPI, vol. 11(9), pages 1-16, August.
    13. Yu Huang & Kai Yang & Weiting Zhang & Kwang Y. Lee, 2018. "Hierarchical Energy Management for the MultiEnergy Carriers System with Different Interest Bodies," Energies, MDPI, vol. 11(10), pages 1-18, October.
    14. Hengrui Ma & Bo Wang & Wenzhong Gao & Dichen Liu & Yong Sun & Zhijun Liu, 2018. "Optimal Scheduling of an Regional Integrated Energy System with Energy Storage Systems for Service Regulation," Energies, MDPI, vol. 11(1), pages 1-19, January.
    15. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    16. Wei, Dajun & Chen, Alian & Sun, Bo & Zhang, Chenghui, 2016. "Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system," Energy, Elsevier, vol. 98(C), pages 296-307.
    17. Li, Fan & Sun, Bo & Zhang, Chenghui & Zhang, Lizhi, 2018. "Operation optimization for combined cooling, heating, and power system with condensation heat recovery," Applied Energy, Elsevier, vol. 230(C), pages 305-316.
    18. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    19. Yongli Wang & Haiyang Yu & Mingyue Yong & Yujing Huang & Fuli Zhang & Xiaohai Wang, 2018. "Optimal Scheduling of Integrated Energy Systems with Combined Heat and Power Generation, Photovoltaic and Energy Storage Considering Battery Lifetime Loss," Energies, MDPI, vol. 11(7), pages 1-21, June.
    20. Liu, Xuezhi & Mancarella, Pierluigi, 2016. "Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems," Applied Energy, Elsevier, vol. 167(C), pages 336-352.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suyang Zhou & Di He & Zhiyang Zhang & Zhi Wu & Wei Gu & Junjie Li & Zhe Li & Gaoxiang Wu, 2019. "A Data-Driven Scheduling Approach for Hydrogen Penetrated Energy System Using LSTM Network," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    2. Qiao, Zheng & Guo, Qinglai & Sun, Hongbin & Sheng, Tongtian, 2018. "Multi-time period optimized configuration and scheduling of gas storage in gas-fired power plants," Applied Energy, Elsevier, vol. 226(C), pages 924-934.
    3. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    4. Pambour, Kwabena Addo & Cakir Erdener, Burcin & Bolado-Lavin, Ricardo & Dijkema, Gerard P.J., 2017. "SAInt – A novel quasi-dynamic model for assessing security of supply in coupled gas and electricity transmission networks," Applied Energy, Elsevier, vol. 203(C), pages 829-857.
    5. Yongjie Zhong & Dongliang Xie & Suwei Zhai & Yonghui Sun, 2018. "Day-Ahead Hierarchical Steady State Optimal Operation for Integrated Energy System Based on Energy Hub," Energies, MDPI, vol. 11(10), pages 1-18, October.
    6. Bao, Zhejing & Chen, Dawei & Wu, Lei & Guo, Xiaogang, 2019. "Optimal inter- and intra-hour scheduling of islanded integrated-energy system considering linepack of gas pipelines," Energy, Elsevier, vol. 171(C), pages 326-340.
    7. He, Liangce & Lu, Zhigang & Zhang, Jiangfeng & Geng, Lijun & Zhao, Hao & Li, Xueping, 2018. "Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas," Applied Energy, Elsevier, vol. 224(C), pages 357-370.
    8. Li, Fan & Sun, Bo & Zhang, Chenghui & Zhang, Lizhi, 2018. "Operation optimization for combined cooling, heating, and power system with condensation heat recovery," Applied Energy, Elsevier, vol. 230(C), pages 305-316.
    9. Morteza Nazari-Heris & Behnam Mohammadi-Ivatloo & Somayeh Asadi, 2020. "Optimal Operation of Multi-Carrier Energy Networks Considering Uncertain Parameters and Thermal Energy Storage," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    10. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2017. "Feasible region method based integrated heat and electricity dispatch considering building thermal inertia," Applied Energy, Elsevier, vol. 192(C), pages 395-407.
    11. Ghahramani, Mehrdad & Nazari-Heris, Morteza & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2022. "A two-point estimate approach for energy management of multi-carrier energy systems incorporating demand response programs," Energy, Elsevier, vol. 249(C).
    12. Xinyu Sun & Hao Wu & Siqi Guo & Lingwei Zheng, 2022. "Day-Ahead Optimal Scheduling of Integrated Energy System Based on Type-II Fuzzy Interval Chance-Constrained Programming," Energies, MDPI, vol. 15(18), pages 1-17, September.
    13. Qiao, Zheng & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Liu, Yuquan & Xiong, Wen, 2017. "An interval gas flow analysis in natural gas and electricity coupled networks considering the uncertainty of wind power," Applied Energy, Elsevier, vol. 201(C), pages 343-353.
    14. Jiang, Yunpeng & Ren, Zhouyang & Yang, Xin & Li, Qiuyan & Xu, Yan, 2022. "A steady-state energy flow analysis method for integrated natural gas and power systems based on topology decoupling," Applied Energy, Elsevier, vol. 306(PA).
    15. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    16. Kwabena Addo Pambour & Rostand Tresor Sopgwi & Bri-Mathias Hodge & Carlo Brancucci, 2018. "The Value of Day-Ahead Coordination of Power and Natural Gas Network Operations," Energies, MDPI, vol. 11(7), pages 1-23, June.
    17. Zhuang, Wennan & Zhou, Suyang & Gu, Wei & Chen, Xiaogang, 2021. "Optimized dispatching of city-scale integrated energy system considering the flexibilities of city gas gate station and line packing," Applied Energy, Elsevier, vol. 290(C).
    18. Song, Xiaoling & Wang, Yudong & Zhang, Zhe & Shen, Charles & Peña-Mora, Feniosky, 2021. "Economic-environmental equilibrium-based bi-level dispatch strategy towards integrated electricity and natural gas systems," Applied Energy, Elsevier, vol. 281(C).
    19. Xiao Gong & Fan Li & Bo Sun & Dong Liu, 2020. "Collaborative Optimization of Multi-Energy Complementary Combined Cooling, Heating, and Power Systems Considering Schedulable Loads," Energies, MDPI, vol. 13(4), pages 1-17, February.
    20. Vahid Khaligh & Majid Oloomi Buygi & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2018. "A Multi-Attribute Expansion Planning Model for Integrated Gas–Electricity System," Energies, MDPI, vol. 11(10), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:830-:d:210394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.