IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3952-d825362.html
   My bibliography  Save this article

Energy Consumption by DHW System with a Circulation Loop as an Energy Efficiency Component, Based on an Example of a Residential Building

Author

Listed:
  • Marcin Klimczak

    (Faculty of Environmental Engineering, Wrocław University of Science and Technology, C.K. Norwida 4/6 St., 50-373 Wrocław, Poland)

  • Grzegorz Bartnicki

    (Faculty of Environmental Engineering, Wrocław University of Science and Technology, C.K. Norwida 4/6 St., 50-373 Wrocław, Poland)

  • Piotr Ziembicki

    (Faculty of Civil Engineering, Architecture and Environmental Engineering, University of Zielona Góra, Prof. Z. Szafrana 15 St., 65-516 Zielona Góra, Poland)

Abstract

In the EU countries, almost 50% of the produced energy is used in residential buildings. More than 25% of this energy is used to produce domestic hot water, of which almost 80% is used to heat water in domestic hot water circulation systems. This is due to high expectations on the part of residents based on their comfort, in particular regarding the supply of heat for heating and domestic hot water. In the course of their long-term research conducted on real systems, the authors confirmed that the operation of domestic hot water distribution systems causes significant costs, mainly due to heat losses. Therefore, typical variants of energy optimization of such systems were analyzed. Tests have shown that selected solutions, such as the use of control automation, are not sufficient, and recommended additional thermal insulation may not be applicable due to technical reasons. With an aim of finding a solution to the problem, the publication analyzes operational data from an existing heat source and domestic hot water circulation system in a residential building. On the basis of these analyses, a solution was proposed to reduce energy consumption within the installation by means of its hydraulic optimization. The reduction of heat losses in domestic hot water installation by means of a method presented by the authors is estimated at approximately 20%.

Suggested Citation

  • Marcin Klimczak & Grzegorz Bartnicki & Piotr Ziembicki, 2022. "Energy Consumption by DHW System with a Circulation Loop as an Energy Efficiency Component, Based on an Example of a Residential Building," Energies, MDPI, vol. 15(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3952-:d:825362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3952/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3952/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nis Bertelsen & Brian Vad Mathiesen, 2020. "EU-28 Residential Heat Supply and Consumption: Historical Development and Status," Energies, MDPI, vol. 13(8), pages 1-21, April.
    2. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    3. Martinopoulos, Georgios & Papakostas, Konstantinos T. & Papadopoulos, Agis M., 2018. "A comparative review of heating systems in EU countries, based on efficiency and fuel cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 687-699.
    4. Theofanis Benakopoulos & William Vergo & Michele Tunzi & Robbe Salenbien & Svend Svendsen, 2021. "Overview of Solutions for the Low-Temperature Operation of Domestic Hot-Water Systems with a Circulation Loop," Energies, MDPI, vol. 14(11), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Gonzalez-Salazar & Thomas Langrock & Christoph Koch & Jana Spieß & Alexander Noack & Markus Witt & Michael Ritzau & Armin Michels, 2020. "Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin," Energies, MDPI, vol. 13(23), pages 1-27, December.
    2. Edoardo Ruffino & Bruno Piga & Alessandro Casasso & Rajandrea Sethi, 2022. "Heat Pumps, Wood Biomass and Fossil Fuel Solutions in the Renovation of Buildings: A Techno-Economic Analysis Applied to Piedmont Region (NW Italy)," Energies, MDPI, vol. 15(7), pages 1-25, March.
    3. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    4. Stef Jacobs & Margot De Pauw & Senne Van Minnebruggen & Sara Ghane & Thomas Huybrechts & Peter Hellinckx & Ivan Verhaert, 2023. "Grouped Charging of Decentralised Storage to Efficiently Control Collective Heating Systems: Limitations and Opportunities," Energies, MDPI, vol. 16(8), pages 1-28, April.
    5. Michael Mans & Tobias Blacha & Thomas Schreiber & Dirk Müller, 2022. "Development and Application of an Open-Source Framework for Automated Thermal Network Generation and Simulations in Modelica," Energies, MDPI, vol. 15(12), pages 1-25, June.
    6. Robin Zeh & Björn Ohlsen & David Philipp & David Bertermann & Tim Kotz & Nikola Jocić & Volker Stockinger, 2021. "Large-Scale Geothermal Collector Systems for 5th Generation District Heating and Cooling Networks," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    7. Bartnicki, Grzegorz & Klimczak, Marcin & Ziembicki, Piotr, 2023. "Evaluation of the effects of optimization of gas boiler burner control by means of an innovative method of Fuel Input Factor," Energy, Elsevier, vol. 263(PD).
    8. Camille Jeandaux & Jean-Baptiste Videau & Anne Prieur-Vernat, 2021. "Life Cycle Assessment of District Heating Systems in Europe: Case Study and Recommendations," Sustainability, MDPI, vol. 13(20), pages 1-32, October.
    9. Costanza Saletti & Mirko Morini & Agostino Gambarotta, 2020. "The Status of Research and Innovation on Heating and Cooling Networks as Smart Energy Systems within Horizon 2020," Energies, MDPI, vol. 13(11), pages 1-27, June.
    10. De Jaeger, Ina & Reynders, Glenn & Ma, Yixiao & Saelens, Dirk, 2018. "Impact of building geometry description within district energy simulations," Energy, Elsevier, vol. 158(C), pages 1060-1069.
    11. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    12. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    13. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    14. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    15. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
    16. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    17. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    18. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    19. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    20. Cai, Hanmin & You, Shi & Wu, Jianzhong, 2020. "Agent-based distributed demand response in district heating systems," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3952-:d:825362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.