IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3437-d188955.html
   My bibliography  Save this article

A Robust Scheduling Optimization Model for an Integrated Energy System with P2G Based on Improved CVaR

Author

Listed:
  • Zhongfu Tan

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Qingkun Tan

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Shenbo Yang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Liwei Ju

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Gejirifu De

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

The uncertainty of wind power and photoelectric power output will cause fluctuations in system frequency and power quality. To ensure the stable operation of the power system, a comprehensive scheduling optimization model for the electricity-to-gas integrated energy system is proposed. Power-to-gas (P2G) technology enhances the flexibility of the integrated energy system and the power system in absorbing renewable energy. In this context, firstly, an electricity-to-gas optimization scheduling model is proposed, and the improved Conditional Value at Risk ( CVaR ) is proposed to deal with the uncertainty of wind power and photoelectric power output. Secondly, taking the integrated energy system with the P2G operating cost and the carbon emission cost as the objective function, an optimal scheduling model of the multi-energy system is solved by the A Mathematical Programming Language (AMPL) solver. Finally, the results of the example illustrate the optimal multi-energy system scheduling model and analyze the economic benefits of the P2G technology to improve the system to absorb wind power and photovoltaic power. The simulation calculation of the proposed model demonstrates the necessity of taking into account the operating cost of the electrical gas conversion in the integrated energy system, and the feasibility of considering the economic and wind power acceptance capabilities.

Suggested Citation

  • Zhongfu Tan & Qingkun Tan & Shenbo Yang & Liwei Ju & Gejirifu De, 2018. "A Robust Scheduling Optimization Model for an Integrated Energy System with P2G Based on Improved CVaR," Energies, MDPI, vol. 11(12), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3437-:d:188955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaudry, Modassar & Jenkins, Nick & Qadrdan, Meysam & Wu, Jianzhong, 2014. "Combined gas and electricity network expansion planning," Applied Energy, Elsevier, vol. 113(C), pages 1171-1187.
    2. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    3. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Sun & Hao Wu & Siqi Guo & Lingwei Zheng, 2022. "Day-Ahead Optimal Scheduling of Integrated Energy System Based on Type-II Fuzzy Interval Chance-Constrained Programming," Energies, MDPI, vol. 15(18), pages 1-17, September.
    2. Dongmei Zhao & Xuan Xia & Ran Tao, 2019. "Optimal Configuration of Electric-Gas-Thermal Multi-Energy Storage System for Regional Integrated Energy System," Energies, MDPI, vol. 12(13), pages 1-22, July.
    3. Xiaoyu Lyu & Zhiyu Xu & Ning Wang & Min Fu & Weisheng Xu, 2019. "A Two-Layer Interactive Mechanism for Peer-to-Peer Energy Trading Among Virtual Power Plants," Energies, MDPI, vol. 12(19), pages 1-28, September.
    4. Masoud Agabalaye-Rahvar & Amin Mansour-Saatloo & Mohammad Amin Mirzaei & Behnam Mohammadi-Ivatloo & Kazem Zare & Amjad Anvari-Moghaddam, 2020. "Robust Optimal Operation Strategy for a Hybrid Energy System Based on Gas-Fired Unit, Power-to-Gas Facility and Wind Power in Energy Markets," Energies, MDPI, vol. 13(22), pages 1-21, November.
    5. Houfei Lin & Jianxin Jin & Qidai Lin & Bo Li & Chengzhi Wei & Wenfa Kang & Minyou Chen, 2019. "Distributed Settlement of Frequency Regulation Based on a Battery Energy Storage System," Energies, MDPI, vol. 12(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    2. Shaohua Hu & Xinlong Zhou & Yi Luo & Guang Zhang, 2019. "Numerical Simulation Three-Dimensional Nonlinear Seepage in a Pumped-Storage Power Station: Case Study," Energies, MDPI, vol. 12(1), pages 1-15, January.
    3. Bozorgavari, Seyed Aboozar & Aghaei, Jamshid & Pirouzi, Sasan & Nikoobakht, Ahmad & Farahmand, Hossein & Korpås, Magnus, 2020. "Robust planning of distributed battery energy storage systems in flexible smart distribution networks: A comprehensive study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    4. Yuan, Qiheng & Zhou, Keliang & Yao, Jing, 2020. "A new measure of wind power variability with implications for the optimal sizing of standalone wind power systems," Renewable Energy, Elsevier, vol. 150(C), pages 538-549.
    5. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    6. Saboori, Hedayat & Hemmati, Reza, 2017. "Maximizing DISCO profit in active distribution networks by optimal planning of energy storage systems and distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 365-372.
    7. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Saboori, Hedayat & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Dehghan, Shahab, 2017. "Energy storage planning in electric power distribution networks – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1108-1121.
    9. Jarvinen, J. & Goldsworthy, M. & White, S. & Pudney, P. & Belusko, M. & Bruno, F., 2021. "Evaluating the utility of passive thermal storage as an energy storage system on the Australian energy market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Feifei Wu & Ruiyu Li & Lucheng Huang & Hong Miao & Xin Li, 2017. "Theme evolution analysis of electrochemical energy storage research based on CitNetExplorer," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 113-139, January.
    11. Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Goglio, Pietro & Hu, Yukun & Varga, Liz & McCabe, Leah, 2020. "Techno-environmental analysis of battery storage for grid level energy services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Azcárate, Cristina & Mallor, Fermín & Mateo, Pedro, 2017. "Tactical and operational management of wind energy systems with storage using a probabilistic forecast of the energy resource," Renewable Energy, Elsevier, vol. 102(PB), pages 445-456.
    13. Dong Gu Choi & Daiki Min & Jong-hyun Ryu, 2018. "Economic Value Assessment and Optimal Sizing of an Energy Storage System in a Grid-Connected Wind Farm," Energies, MDPI, vol. 11(3), pages 1-23, March.
    14. Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Odukomaiya, Adewale & Abu-Heiba, Ahmad & Graham, Samuel & Momen, Ayyoub M., 2018. "Experimental and analytical evaluation of a hydro-pneumatic compressed-air Ground-Level Integrated Diverse Energy Storage (GLIDES) system," Applied Energy, Elsevier, vol. 221(C), pages 75-85.
    17. Bullich-Massagué, Eduard & Cifuentes-García, Francisco-Javier & Glenny-Crende, Ignacio & Cheah-Mañé, Marc & Aragüés-Peñalba, Mònica & Díaz-González, Francisco & Gomis-Bellmunt, Oriol, 2020. "A review of energy storage technologies for large scale photovoltaic power plants," Applied Energy, Elsevier, vol. 274(C).
    18. Li, Jianwei & Yang, Qingqing & Robinson, Francis. & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system," Energy, Elsevier, vol. 118(C), pages 1110-1122.
    19. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    20. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3437-:d:188955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.