IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p132-d125661.html
   My bibliography  Save this article

Study on the Effect of Reciprocating Pump Pipeline System Vibration on Oil Transportation Stations

Author

Listed:
  • Hongfang Lu

    (School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
    Trenchless Technology Center, Louisiana Tech University, Ruston, LA 71270, USA)

  • Xiaonan Wu

    (School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China)

  • Kun Huang

    (School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China)

Abstract

Due to the periodic movement of the piston in the reciprocating pump, the fluid will cause a pressure pulsation, and the resulting pipeline vibration may lead to instrument distortion, pipe failure and equipment damage. Therefore, it is necessary to study the vibration phenomena of reciprocating pump pipelines based on pressure pulsation theory. This paper starts from the reciprocating pump pipe pressure pulsation caused by a fluid, pressure pulsation in the pipeline and the unbalanced exciting force is calculated under the action of the reciprocating pump. Then, the numerical simulation model is established based on the pipe beam model, and the rationality of the numerical simulation method is verified by indoor experiments. Finally, a case study is taken as an example to analyze the vibration law of the pipeline system, and vibration reduction measures are proposed. The following main conclusions are drawn from the analysis: (1) unbalanced exciting forces are produced in the elbows or tee joints, and it can also influence the straight pipe to different levels; (2) in actual engineering, it should be possible to prevent the simultaneous settlement of multiple places; (3) the vibration amplitude increases with the pipe thermal stress, and when the oil temperature is higher than 85 °C, it had a greater influence on the vertical vibration amplitude of the pipe.

Suggested Citation

  • Hongfang Lu & Xiaonan Wu & Kun Huang, 2018. "Study on the Effect of Reciprocating Pump Pipeline System Vibration on Oil Transportation Stations," Energies, MDPI, vol. 11(1), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:132-:d:125661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emma Frosina & Adolfo Senatore & Manuel Rigosi, 2017. "Study of a High-Pressure External Gear Pump with a Computational Fluid Dynamic Modeling Approach," Energies, MDPI, vol. 10(8), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Hu & Guorong Wang & Liming Dai & Peng Zhang & Ming Li & Yukun Fu, 2018. "Sealing Failure Analysis on V-Shaped Sealing Rings of an Inserted Sealing Tool Used for Multistage Fracturing Processes," Energies, MDPI, vol. 11(6), pages 1-11, June.
    2. Lu Cui & Fanfan Qiao & Meng Li & Yiming Xiao & Jiarui Cheng, 2022. "Study on the Effect of Fracturing Pump Start and Stop on Tubing Fluid-Structure Interaction Vibration in HPHT Wells via MOC," Energies, MDPI, vol. 15(24), pages 1-20, December.
    3. Hongfang Lu & Guoguang Ma & Xiaoting Li & Shijuan Wu, 2018. "Stress Analysis of LNG Storage Tank Outlet Pipes and Flanges," Energies, MDPI, vol. 11(4), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Zardin & Emiliano Natali & Massimo Borghi, 2019. "Evaluation of the Hydro—Mechanical Efficiency of External Gear Pumps," Energies, MDPI, vol. 12(13), pages 1-19, June.
    2. Piotr Osiński & Adam Deptuła & Marian A. Partyka, 2022. "Hydraulic Tests of the PZ0 Gear Micropump and the Importance Rank of Its Design and Operating Parameters," Energies, MDPI, vol. 15(9), pages 1-27, April.
    3. Gabriele Muzzioli & Luca Montorsi & Andrea Polito & Andrea Lucchi & Alessandro Sassi & Massimo Milani, 2021. "About the Influence of Eco-Friendly Fluids on the Performance of an External Gear Pump," Energies, MDPI, vol. 14(4), pages 1-26, February.
    4. Alessandro Corvaglia & Massimo Rundo & Paolo Casoli & Antonio Lettini, 2021. "Evaluation of Tooth Space Pressure and Incomplete Filling in External Gear Pumps by Means of Three-Dimensional CFD Simulations," Energies, MDPI, vol. 14(2), pages 1-16, January.
    5. Paulina Szwemin & Wieslaw Fiebig, 2021. "The Influence of Radial and Axial Gaps on Volumetric Efficiency of External Gear Pumps," Energies, MDPI, vol. 14(15), pages 1-21, July.
    6. Nicola Casari & Ettore Fadiga & Michele Pinelli & Saverio Randi & Alessio Suman, 2019. "Pressure Pulsation and Cavitation Phenomena in a Micro-ORC System," Energies, MDPI, vol. 12(11), pages 1-18, June.
    7. Bjørn H. Hjertager, 2017. "Engineering Fluid Dynamics," Energies, MDPI, vol. 10(10), pages 1-2, September.
    8. Gianluca Marinaro & Emma Frosina & Adolfo Senatore, 2021. "A Numerical Analysis of an Innovative Flow Ripple Reduction Method for External Gear Pumps," Energies, MDPI, vol. 14(2), pages 1-22, January.
    9. Piotr Osiński & Grzegorz Chruścielski & Leszek Korusiewicz, 2021. "Theoretical and Experimental Fatigue Strength Calculations of Lips Compensating Circumferential Backlash in Gear Pumps," Energies, MDPI, vol. 14(1), pages 1-14, January.
    10. Miquel Torrent & Pedro Javier Gamez-Montero & Esteban Codina, 2021. "Parameterization, Modeling, and Validation in Real Conditions of an External Gear Pump," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    11. Timm Hieronymus & Thomas Lobsinger & Gunther Brenner, 2020. "Investigation of the Internal Displacement Chamber Pressure of a Rotary Vane Pump," Energies, MDPI, vol. 13(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:132-:d:125661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.