IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1869-d158556.html
   My bibliography  Save this article

Indicator-Based Methodology for Assessing EV Charging Infrastructure Using Exploratory Data Analysis

Author

Listed:
  • Alexandre Lucas

    (European Commission, JRC, Directorate C Energy, Transport and Climate, PO Box 2, 1755 ZG Petten, The Netherlands)

  • Giuseppe Prettico

    (European Commission, JRC, Directorate C Energy, Transport and Climate, PO Box 2, 1755 ZG Petten, The Netherlands)

  • Marco Giacomo Flammini

    (European Commission, JRC, Directorate C Energy, Transport and Climate, PO Box 2, 1755 ZG Petten, The Netherlands)

  • Evangelos Kotsakis

    (European Commission, JRC, Directorate C Energy, Transport and Climate, PO Box 2, 1755 ZG Petten, The Netherlands)

  • Gianluca Fulli

    (European Commission, JRC, Directorate C Energy, Transport and Climate, PO Box 2, 1755 ZG Petten, The Netherlands)

  • Marcelo Masera

    (European Commission, JRC, Directorate C Energy, Transport and Climate, PO Box 2, 1755 ZG Petten, The Netherlands)

Abstract

Electric vehicle (EV) charging infrastructure rollout is well under way in several power systems, namely North America, Japan, Europe, and China. In order to support EV charging infrastructures design and operation, little attempt has been made to develop indicator-based methods characterising such networks across different regions. This study defines an assessment methodology, composed by eight indicators, allowing a comparison among EV public charging infrastructures. The proposed indicators capture the following: energy demand from EVs, energy use intensity, charger’s intensity distribution, the use time ratios, energy use ratios, the nearest neighbour distance between chargers and availability, the total service ratio, and the carbon intensity as an environmental impact indicator. We apply the methodology to a dataset from ElaadNL, a reference smart charging provider in The Netherlands, using open source geographic information system (GIS) and R software. The dataset reveals higher energy intensity in six urban areas and that 50% of energy supplied comes from 19.6% of chargers. Correlations of spatial density are strong and nearest neighbouring distances range from 1101 to 9462 m. Use time and energy use ratios are 11.21% and 3.56%. The average carbon intensity is 4.44 gCO 2eq /MJ. Finally, the indicators are used to assess the impact of relevant public policies on the EV charging infrastructure use and roll-out.

Suggested Citation

  • Alexandre Lucas & Giuseppe Prettico & Marco Giacomo Flammini & Evangelos Kotsakis & Gianluca Fulli & Marcelo Masera, 2018. "Indicator-Based Methodology for Assessing EV Charging Infrastructure Using Exploratory Data Analysis," Energies, MDPI, vol. 11(7), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1869-:d:158556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    2. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    3. Zhu, Zhi-Hong & Gao, Zi-You & Zheng, Jian-Feng & Du, Hao-Ming, 2016. "Charging station location problem of plug-in electric vehicles," Journal of Transport Geography, Elsevier, vol. 52(C), pages 11-22.
    4. Hafez, Omar & Bhattacharya, Kankar, 2017. "Optimal design of electric vehicle charging stations considering various energy resources," Renewable Energy, Elsevier, vol. 107(C), pages 576-589.
    5. Helmus, J.R. & Spoelstra, J.C. & Refa, N. & Lees, M. & van den Hoed, R., 2018. "Assessment of public charging infrastructure push and pull rollout strategies: The case of the Netherlands," Energy Policy, Elsevier, vol. 121(C), pages 35-47.
    6. Yi, Zonggen & Bauer, Peter H., 2016. "Optimization models for placement of an energy-aware electric vehicle charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 227-244.
    7. Heidrich, Oliver & Hill, Graeme A. & Neaimeh, Myriam & Huebner, Yvonne & Blythe, Philip T. & Dawson, Richard J., 2017. "How do cities support electric vehicles and what difference does it make?," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 17-23.
    8. Lucas, Alexandre & Neto, Rui Costa & Silva, Carla Alexandra, 2013. "Energy supply infrastructure LCA model for electric and hydrogen transportation systems," Energy, Elsevier, vol. 56(C), pages 70-80.
    9. Liu, Jian, 2012. "Electric vehicle charging infrastructure assignment and power grid impacts assessment in Beijing," Energy Policy, Elsevier, vol. 51(C), pages 544-557.
    10. Harrison, Gillian & Thiel, Christian, 2017. "An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 165-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milan Straka & Rui Carvalho & Gijs van der Poel & v{L}ubov{s} Buzna, 2020. "Explaining the distribution of energy consumption at slow charging infrastructure for electric vehicles from socio-economic data," Papers 2006.01672, arXiv.org, revised Jun 2020.
    2. Dimitrios Rizopoulos & Domokos Esztergár-Kiss, 2020. "A Method for the Optimization of Daily Activity Chains Including Electric Vehicles," Energies, MDPI, vol. 13(4), pages 1-21, February.
    3. Alexandre Lucas & Ricardo Barranco & Nazir Refa, 2019. "EV Idle Time Estimation on Charging Infrastructure, Comparing Supervised Machine Learning Regressions," Energies, MDPI, vol. 12(2), pages 1-17, January.
    4. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
    5. Anastasios Tsakalidis & Andreea Julea & Christian Thiel, 2019. "The Role of Infrastructure for Electric Passenger Car Uptake in Europe," Energies, MDPI, vol. 12(22), pages 1-18, November.
    6. Cláudia A. Soares Machado & Harmi Takiya & Charles Lincoln Kenji Yamamura & José Alberto Quintanilha & Fernando Tobal Berssaneti, 2020. "Placement of Infrastructure for Urban Electromobility: A Sustainable Approach," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    7. Milan Straka & Pasquale De Falco & Gabriella Ferruzzi & Daniela Proto & Gijs van der Poel & Shahab Khormali & v{L}ubov{s} Buzna, 2019. "Predicting popularity of EV charging infrastructure from GIS data," Papers 1910.02498, arXiv.org.
    8. Christian Thiel & Andreea Julea & Beatriz Acosta Iborra & Nerea De Miguel Echevarria & Emanuela Peduzzi & Enrico Pisoni & Jonatan J. Gómez Vilchez & Jette Krause, 2019. "Assessing the Impacts of Electric Vehicle Recharging Infrastructure Deployment Efforts in the European Union," Energies, MDPI, vol. 12(12), pages 1-23, June.
    9. Armin Razmjoo & Meysam Majidi Nezhad & Lisa Gakenia Kaigutha & Mousa Marzband & Seyedali Mirjalili & Mehdi Pazhoohesh & Saim Memon & Mehdi A. Ehyaei & Giuseppe Piras, 2021. "Investigating Smart City Development Based on Green Buildings, Electrical Vehicles and Feasible Indicators," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    10. Mona Kabus & Lars Nolting & Benedict J. Mortimer & Jan C. Koj & Wilhelm Kuckshinrichs & Rik W. De Doncker & Aaron Praktiknjo, 2020. "Environmental Impacts of Charging Concepts for Battery Electric Vehicles: A Comparison of On-Board and Off-Board Charging Systems Based on a Life Cycle Assessment," Energies, MDPI, vol. 13(24), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anastasios Tsakalidis & Andreea Julea & Christian Thiel, 2019. "The Role of Infrastructure for Electric Passenger Car Uptake in Europe," Energies, MDPI, vol. 12(22), pages 1-18, November.
    2. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    3. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    4. Helmus, Jurjen R. & Lees, Michael H. & van den Hoed, Robert, 2022. "A validated agent-based model for stress testing charging infrastructure utilization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 237-262.
    5. Jan Pekárek, 2017. "A Model of Charging Service Demand for the Czech Republic," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(5), pages 1741-1750.
    6. Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
    7. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    8. Shuping Wu & Zan Yang, 2020. "Availability of Public Electric Vehicle Charging Pile and Development of Electric Vehicle: Evidence from China," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    9. Adrian Ostermann & Yann Fabel & Kim Ouan & Hyein Koo, 2022. "Forecasting Charging Point Occupancy Using Supervised Learning Algorithms," Energies, MDPI, vol. 15(9), pages 1-23, May.
    10. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    11. Yi, Zonggen & Bauer, Peter H., 2016. "Optimization models for placement of an energy-aware electric vehicle charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 227-244.
    12. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    13. Alali, Layla & Niesten, Eva & Gagliardi, Dimitri, 2022. "The impact of UK financial incentives on the adoption of electric fleets: The moderation effect of GDP change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 200-220.
    14. Zhang, Lihui & Zhao, Zhenli & Yang, Meng & Li, Songrui, 2020. "A multi-criteria decision method for performance evaluation of public charging service quality," Energy, Elsevier, vol. 195(C).
    15. Vytautas Palevičius & Askoldas Podviezko & Henrikas Sivilevičius & Olegas Prentkovskis, 2018. "Decision-Aiding Evaluation of Public Infrastructure for Electric Vehicles in Cities and Resorts of Lithuania," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    16. Kazemi, Mohammad Amin & Sedighizadeh, Mostafa & Mirzaei, Mohammad Javad & Homaee, Omid, 2016. "Optimal siting and sizing of distribution system operator owned EV parking lots," Applied Energy, Elsevier, vol. 179(C), pages 1176-1184.
    17. Betul Yagmahan & Hilal Yılmaz, 2023. "An integrated ranking approach based on group multi-criteria decision making and sensitivity analysis to evaluate charging stations under sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 96-121, January.
    18. Sikder, Sujit Kumar & Nagarajan, Magesh & Mustafee, Navonil, 2023. "Augmenting EV charging infrastructure towards transformative sustainable cities: An equity-based approach," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    19. Andrenacci, N. & Genovese, A. & Ragona, R., 2017. "Determination of the level of service and customer crowding for electric charging stations through fuzzy models and simulation techniques," Applied Energy, Elsevier, vol. 208(C), pages 97-107.
    20. Milan Straka & Rui Carvalho & Gijs van der Poel & v{L}ubov{s} Buzna, 2020. "Explaining the distribution of energy consumption at slow charging infrastructure for electric vehicles from socio-economic data," Papers 2006.01672, arXiv.org, revised Jun 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1869-:d:158556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.