IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i4p575-d1338665.html
   My bibliography  Save this article

A Comparative Study of Vehicle Velocity Prediction for Hybrid Electric Vehicles Based on a Neural Network

Author

Listed:
  • Pei Zhang

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Research Center for New Energy & Intelligent Connected Vehicle Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China)

  • Wangda Lu

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Research Center for New Energy & Intelligent Connected Vehicle Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China)

  • Changqing Du

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Research Center for New Energy & Intelligent Connected Vehicle Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China)

  • Jie Hu

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Research Center for New Energy & Intelligent Connected Vehicle Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
    Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang 441000, China)

  • Fuwu Yan

    (Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
    Hubei Research Center for New Energy & Intelligent Connected Vehicle Engineering, Wuhan University of Technology, Wuhan 430070, China
    Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China)

Abstract

Vehicle velocity prediction (VVP) plays a pivotal role in determining the power demand of hybrid electric vehicles, which is crucial for establishing effective energy management strategies and, subsequently, improving the fuel economy. Neural networks (NNs) have emerged as a powerful tool for VVP, due to their robustness and non-linear mapping capabilities. This paper describes a comprehensive exploration of NN-based VVP methods employing both qualitative theory analysis and quantitative numerical simulations. The used methodology involved the extraction of key feature parameters for model inputs through the utilization of Pearson correlation coefficients and the random forest (RF) method. Subsequently, three distinct NN-based VVP models were constructed comprising the following: a backpropagation neural network (BPNN) model, a long short-term memory (LSTM) model, and a generative pre-training (GPT) model. Simulation experiments were conducted to investigate various factors, such as the feature parameters, sliding window length, and prediction horizon, and the prediction accuracy and computation time were identified as key performance metrics for VVP. Finally, the relationship between the model inputs and velocity prediction performance was revealed through various comparative analyses. This study not only facilitated the identification of an optimal NN model configuration to balance prediction accuracy and computation time, but also serves as a foundational step toward enhancing the energy efficiency of hybrid electric vehicles.

Suggested Citation

  • Pei Zhang & Wangda Lu & Changqing Du & Jie Hu & Fuwu Yan, 2024. "A Comparative Study of Vehicle Velocity Prediction for Hybrid Electric Vehicles Based on a Neural Network," Mathematics, MDPI, vol. 12(4), pages 1-26, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:575-:d:1338665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/4/575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/4/575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Changle & Ding, Feng & Wang, Weida & He, Wei, 2017. "Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control," Applied Energy, Elsevier, vol. 189(C), pages 640-653.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2020. "Velocity and energy trajectory prediction of electrified powertrain for look ahead control," Applied Energy, Elsevier, vol. 279(C).
    2. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    4. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Xixue Liu & Datong Qin & Shaoqian Wang, 2019. "Minimum Energy Management Strategy of Equivalent Fuel Consumption of Hybrid Electric Vehicle Based on Improved Global Optimization Equivalent Factor," Energies, MDPI, vol. 12(11), pages 1-17, May.
    6. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    7. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    8. Massimiliano Passalacqua & Mauro Carpita & Serge Gavin & Mario Marchesoni & Matteo Repetto & Luis Vaccaro & SĂ©bastien Wasterlain, 2019. "Supercapacitor Storage Sizing Analysis for a Series Hybrid Vehicle," Energies, MDPI, vol. 12(9), pages 1-15, May.
    9. Fabio Orecchini & Adriano Santiangeli & Fabrizio Zuccari & Adriano Alessandrini & Fabio Cignini & Fernando Ortenzi, 2021. "Real Drive Truth Test of the Toyota Yaris Hybrid 2020 and Energy Analysis Comparison with the 2017 Model," Energies, MDPI, vol. 14(23), pages 1-22, December.
    10. Li, Ji & Zhou, Quan & He, Yinglong & Shuai, Bin & Li, Ziyang & Williams, Huw & Xu, Hongming, 2019. "Dual-loop online intelligent programming for driver-oriented predict energy management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Kun Huang & Changle Xiang & Yue Ma & Weida Wang & Reza Langari, 2017. "Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission," Energies, MDPI, vol. 10(2), pages 1-18, February.
    12. Planakis, Nikolaos & Papalambrou, George & Kyrtatos, Nikolaos, 2022. "Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques," Applied Energy, Elsevier, vol. 307(C).
    13. Kong, Yan & Xu, Nan & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2021. "Acquisition of full-factor trip information for global optimization energy management in multi-energy source vehicles and the measure of the amount of information to be transmitted," Energy, Elsevier, vol. 236(C).
    14. Liu, Yonggang & Liu, Junjun & Zhang, Yuanjian & Wu, Yitao & Chen, Zheng & Ye, Ming, 2020. "Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization," Energy, Elsevier, vol. 207(C).
    15. Babar, Abdul Haseeb Khan & Ali, Yousaf, 2021. "Enhancement of electric vehicles’ market competitiveness using fuzzy quality function deployment," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    16. Gye-Seong Lee & Dong-Hyun Kim & Jong-Ho Han & Myeong-Hwan Hwang & Hyun-Rok Cha, 2019. "Optimal Operating Point Determination Method Design for Range-Extended Electric Vehicles Based on Real Driving Tests," Energies, MDPI, vol. 12(5), pages 1-17, March.
    17. Li, Guozhen & Zhang, Zhenyu & Shi, Wankai & Li, Wenyong, 2023. "Energy management strategy and simulation analysis of a hybrid train based on a comprehensive efficiency optimization," Applied Energy, Elsevier, vol. 349(C).
    18. Guanghai Zhu & Jianbin Lin & Qingwu Liu & Hongwen He, 2019. "Research on the Energy-Saving Strategy of Path Planning for Electric Vehicles Considering Traffic Information," Energies, MDPI, vol. 12(19), pages 1-14, September.
    19. Rezaei, A. & Burl, J.B. & Solouk, A. & Zhou, B. & Rezaei, M. & Shahbakhti, M., 2017. "Catch energy saving opportunity (CESO), an instantaneous optimal energy management strategy for series hybrid electric vehicles," Applied Energy, Elsevier, vol. 208(C), pages 655-665.
    20. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei & Guo, Qiuyi, 2018. "Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction," Energy, Elsevier, vol. 155(C), pages 838-852.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:575-:d:1338665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.