IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3727-d1444926.html
   My bibliography  Save this article

Robust Secondary Controller for Islanded Microgrids with Unexpected Electrical Partitions under Fault Conditions

Author

Listed:
  • Evangelos E. Pompodakis

    (Institute of Energy, Environment and Climatic Change, Hellenic Mediterranean University, 714 10 Iraklio, Greece)

  • Georgios I. Orfanoudakis

    (School of Engineering, Power Systems and Energy Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece)

  • Katsigiannis Yiannis

    (School of Engineering, Power Systems and Energy Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece)

  • Emmanuel S. Karapidakis

    (School of Engineering, Power Systems and Energy Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece)

Abstract

This paper proposes a sophisticated, fault-tolerant, and centralized secondary controller that is designed for inverter-based, islanded microgrids. The proposed controller enhances system resilience to unexpected network partitions, which typically occur due to the tripping of protective devices under fault conditions. In typical radially configured MGs, a line fault can cause protective devices to isolate the faulted line, thereby splitting the MG into two electrically independent sub-microgrids (SMGs), while retaining the existing communication and control framework. In contrast to traditional centralized and distributed secondary controllers, which often fail to restore the frequency to the nominal value (50 Hz) in split SMGs, the proposed controller exhibits exceptional performance. Through simulation studies on 6-bus and 13-bus islanded MG setups, the controller has not only demonstrated its ability to swiftly restore the nominal frequency in both SMGs within a few seconds (specifically 5 s), but also to ensure fair power distribution among the distributed generators (DGs) supplying the SMGs. This rapid frequency stabilization underscores the controller’s effectiveness in maintaining stable frequency levels immediately following a fault. In contrast, the use of traditional centralized and consensus controllers typically results in a frequency deviation of about 3 Hz from the nominal value in one of the SMGs during the microgrid’s partition.

Suggested Citation

  • Evangelos E. Pompodakis & Georgios I. Orfanoudakis & Katsigiannis Yiannis & Emmanuel S. Karapidakis, 2024. "Robust Secondary Controller for Islanded Microgrids with Unexpected Electrical Partitions under Fault Conditions," Energies, MDPI, vol. 17(15), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3727-:d:1444926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin, Peng & Li, Yang & Li, Guoqing & Chen, Zhe & Zhai, Xiaojuan, 2017. "Optimized hierarchical power oscillations control for distributed generation under unbalanced conditions," Applied Energy, Elsevier, vol. 194(C), pages 343-352.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    2. David J. Rincon & Maria A. Mantilla & Juan M. Rey & Miguel Garnica & Damien Guilbert, 2023. "An Overview of Flexible Current Control Strategies Applied to LVRT Capability for Grid-Connected Inverters," Energies, MDPI, vol. 16(3), pages 1-20, January.
    3. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    4. Fermín Barrero-González & Victor Fernão Pires & José L. Sousa & João F. Martins & María Isabel Milanés-Montero & Eva González-Romera & Enrique Romero-Cadaval, 2019. "Photovoltaic Power Converter Management in Unbalanced Low Voltage Networks with Ancillary Services Support," Energies, MDPI, vol. 12(6), pages 1-16, March.
    5. Yajing Gao & Wenhai Yang & Jing Zhu & Jiafeng Ren & Peng Li, 2017. "Evaluating the Effect of Distributed Generation on Power Supply Capacity in Active Distribution System Based on Sensitivity Analysis," Energies, MDPI, vol. 10(10), pages 1-14, September.
    6. Wang, Yingli & Duan, Jialong & Zhao, Yuanyuan & Yuan, Haiwen & He, Benlin & Tang, Qunwei, 2018. "Film-type rain energy converters from conductive polymer/PtCo hybrids," Applied Energy, Elsevier, vol. 218(C), pages 317-324.
    7. Sang-Jae Choi & Sung-Hun Lim, 2020. "Fluctuation Suppression of DC-Link Voltage Using Control of Converters Connected with DC Distributed Generation," Energies, MDPI, vol. 13(21), pages 1-18, November.
    8. Li, Yang & Feng, Bo & Wang, Bin & Sun, Shuchao, 2022. "Joint planning of distributed generations and energy storage in active distribution networks: A Bi-Level programming approach," Energy, Elsevier, vol. 245(C).
    9. Catalin Petrea Ion & Ioan Serban, 2019. "Seamless Integration of an Autonomous Induction Generator System into an Inverter-Based Microgrid," Energies, MDPI, vol. 12(4), pages 1-18, February.
    10. Makrygiorgou, Despoina I. & Alexandridis, Antonio T., 2018. "Distributed stabilizing modular control for stand-alone microgrids," Applied Energy, Elsevier, vol. 210(C), pages 925-935.
    11. Krzysztof Górecki & Kalina Detka, 2019. "Influence of Power Losses in the Inductor Core on Characteristics of Selected DC–DC Converters," Energies, MDPI, vol. 12(10), pages 1-15, May.
    12. Henan Dong & Shun Yuan & Zijiao Han & Zhiyuan Cai & Guangdong Jia & Yangyang Ge, 2018. "A Comprehensive Strategy for Accurate Reactive Power Distribution, Stability Improvement, and Harmonic Suppression of Multi-Inverter-Based Micro-Grid," Energies, MDPI, vol. 11(4), pages 1-16, March.
    13. Wu, Ying & Wu, Yanpeng & Cimen, Halil & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading," Applied Energy, Elsevier, vol. 314(C).
    14. Sang-Jae Choi & Sung-Hun Lim, 2019. "Enhancement on the Fault Ride through Capability of Power Distribution Systems Linked by Distributed Generation due to the Impedance of Superconducting Fault Current Limiters," Energies, MDPI, vol. 12(24), pages 1-18, December.
    15. Mbungu, Nsilulu T. & Ismail, Ali A. & AlShabi, Mohammad & Bansal, Ramesh C. & Elnady, A. & Hamid, Abdul Kadir, 2023. "Control and estimation techniques applied to smart microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3727-:d:1444926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.