IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4516-d291599.html
   My bibliography  Save this article

Stationary Energy Storage System for Fast EV Charging Stations: Simultaneous Sizing of Battery and Converter

Author

Listed:
  • Akhtar Hussain

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406840, Korea
    Research Institute for Northeast Asian Super Grid, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea)

  • Van-Hai Bui

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406840, Korea)

  • Ju-Won Baek

    (Division of Smart Grid, Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Hak-Man Kim

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406840, Korea
    Research Institute for Northeast Asian Super Grid, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea)

Abstract

Optimal sizing of stationary energy storage systems (ESS) is required to reduce the peak load and increase the profit of fast charging stations. Sequential sizing of battery and converter or fixed-size converters are considered in most of the existing studies. However, sequential sizing or fixed-converter sizes may result in under or oversizing of ESS and thus fail to achieve the set targets, such as peak shaving and cost reduction. In order to address these issues, simultaneous sizing of battery and converter is proposed in this study. The proposed method has the ability to avoid the under or oversizing of ESS by considering the converter capacity and battery size as two independence decision variables. A mathematical problem is formulated by considering the stochastic return time of electrical vehicles (EVs), worst-case state of charge at return time, number of registered EVs, charging level of EVs, and other related parameters. The annualized cost of ESS is computed by considering the lifetime of ESS equipment and annual interest rates. The performance of the proposed method is compared with the existing sizing methods for ESS in fast-charging stations. In addition, sensitivity analysis is carried out to analyze the impact of different parameters on the size of the battery and the converter. Simulation results have proved that the proposed method is outperforming the existing sizing methods in terms of the total annual cost of the charging station and the amount of power buying during peak load intervals.

Suggested Citation

  • Akhtar Hussain & Van-Hai Bui & Ju-Won Baek & Hak-Man Kim, 2019. "Stationary Energy Storage System for Fast EV Charging Stations: Simultaneous Sizing of Battery and Converter," Energies, MDPI, vol. 12(23), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4516-:d:291599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Huajie & Hu, Zechun & Song, Yonghua, 2015. "Value of the energy storage system in an electric bus fast charging station," Applied Energy, Elsevier, vol. 157(C), pages 630-639.
    2. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2017. "Fuzzy Logic-Based Operation of Battery Energy Storage Systems (BESSs) for Enhancing the Resiliency of Hybrid Microgrids," Energies, MDPI, vol. 10(3), pages 1-19, February.
    3. Yan Bao & Yu Luo & Weige Zhang & Mei Huang & Le Yi Wang & Jiuchun Jiang, 2018. "A Bi-Level Optimization Approach to Charging Load Regulation of Electric Vehicle Fast Charging Stations Based on a Battery Energy Storage System," Energies, MDPI, vol. 11(1), pages 1-21, January.
    4. Guozhong Liu & Li Kang & Zeyu Luan & Jing Qiu & Fenglei Zheng, 2019. "Charging Station and Power Network Planning for Integrated Electric Vehicles (EVs)," Energies, MDPI, vol. 12(13), pages 1-22, July.
    5. Yorick Ligen & Heron Vrubel & Hubert Girault, 2019. "Local Energy Storage and Stochastic Modeling for Ultrafast Charging Stations," Energies, MDPI, vol. 12(10), pages 1-14, May.
    6. Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shariatio, O. & Coker, P.J. & Smith, S.T. & Potter, B. & Holderbaum, W., 2024. "An integrated techno-economic approach for design and energy management of heavy goods electric vehicle charging station with energy storage systems," Applied Energy, Elsevier, vol. 369(C).
    2. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    3. Rehman, Waqas ur & Bo, Rui & Mehdipourpicha, Hossein & Kimball, Jonathan W., 2022. "Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation," Applied Energy, Elsevier, vol. 313(C).
    4. Carlo Baron & Ameena S. Al-Sumaiti & Sergio Rivera, 2020. "Impact of Energy Storage Useful Life on Intelligent Microgrid Scheduling," Energies, MDPI, vol. 13(4), pages 1-23, February.
    5. Akhtar Hussain & Van-Hai Bui & Ju-Won Baek & Hak-Man Kim, 2020. "Stationary Energy Storage System for Fast EV Charging Stations: Optimality Analysis and Results Validation," Energies, MDPI, vol. 13(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akhtar Hussain & Van-Hai Bui & Ju-Won Baek & Hak-Man Kim, 2020. "Stationary Energy Storage System for Fast EV Charging Stations: Optimality Analysis and Results Validation," Energies, MDPI, vol. 13(1), pages 1-18, January.
    2. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    3. Shariatio, O. & Coker, P.J. & Smith, S.T. & Potter, B. & Holderbaum, W., 2024. "An integrated techno-economic approach for design and energy management of heavy goods electric vehicle charging station with energy storage systems," Applied Energy, Elsevier, vol. 369(C).
    4. Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
    5. Xiaowei Ding & Weige Zhang & Shaoyuan Wei & Zhenpo Wang, 2021. "Optimization of an Energy Storage System for Electric Bus Fast-Charging Station," Energies, MDPI, vol. 14(14), pages 1-17, July.
    6. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    7. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    8. Vitalii Naumov, 2021. "Substantiation of Loading Hub Location for Electric Cargo Bikes Servicing City Areas with Restricted Traffic," Energies, MDPI, vol. 14(4), pages 1-16, February.
    9. Omowunmi Mary Longe & Khmaies Ouahada & Suvendi Rimer & Hendrik C. Ferreira & A. J. Han Vinck, 2017. "Distributed Optimisation Algorithm for Demand Side Management in a Grid-Connected Smart Microgrid," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    10. He, Yi & Liu, Zhaocai & Song, Ziqi, 2020. "Optimal charging scheduling and management for a fast-charging battery electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    11. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    12. Adu-Gyamfi, Gibbson & Song, Huaming & Nketiah, Emmanuel & Obuobi, Bright & Adjei, Mavis & Cudjoe, Dan, 2022. "Determinants of adoption intention of battery swap technology for electric vehicles," Energy, Elsevier, vol. 251(C).
    13. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    14. Alla Ndiaye & Fabrice Locment & Alexandre De Bernardinis & Manuela Sechilariu & Eduardo Redondo-Iglesias, 2022. "A Techno-Economic Analysis of Energy Storage Components of Microgrids for Improving Energy Management Strategies," Energies, MDPI, vol. 15(4), pages 1-15, February.
    15. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    16. Ruifeng Shi & Jiahua Liu & Zhenhong Liao & Li Niu & Eke Ibrahim & Fang Fu, 2019. "An Electric Taxi Charging Station Planning Scheme Based on an Improved Destination Choice Method," Energies, MDPI, vol. 12(19), pages 1-21, October.
    17. Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.
    18. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    19. Yajing Gao & Shixiao Guo & Jiafeng Ren & Zheng Zhao & Ali Ehsan & Yanan Zheng, 2018. "An Electric Bus Power Consumption Model and Optimization of Charging Scheduling Concerning Multi-External Factors," Energies, MDPI, vol. 11(8), pages 1-17, August.
    20. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4516-:d:291599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.