IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp710-724.html
   My bibliography  Save this article

Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm

Author

Listed:
  • Mohammadian, M.
  • Lorestani, A.
  • Ardehali, M.M.

Abstract

Economic dispatch (ED) is a non-convex, non-linear, and non-smooth optimization problem that determines the optimal output power of generation units to meet the forecasted demand from an economic point of view. The objective of this study is to develop and examine the applicability of a newly developed evolutionary particle swarm optimization (E-PSO) algorithm for optimization of the ED problem, where practical constraints, namely, valve-point effects, prohibited operating zones, multiple fuel usage, dynamic ramp rate limits, transmission losses, tie-line capacity, and spinning reserve are considered. In the developed E-PSO algorithm, three operators including mutation, crossover, and selection are applied to enable the search process to skip local optimal points and enhance computational efficiency. To further enhance the performance of the algorithm, an approach is proposed to dynamically adjust the inertia, cognitive, and social weight coefficients to improve exploration and exploitation for smooth convergence. Upon validation of the E-PSO algorithm by means of standard benchmark functions, four case studies including isolated and interconnected power systems are examined and the results are compared with those from other algorithms. The findings show that the proposed features enable the E-PSO algorithm to successfully optimize the ED problem in lower simulation time, while all constraints are met.

Suggested Citation

  • Mohammadian, M. & Lorestani, A. & Ardehali, M.M., 2018. "Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm," Energy, Elsevier, vol. 161(C), pages 710-724.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:710-724
    DOI: 10.1016/j.energy.2018.07.167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
    2. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2018. "Solving the dynamic economic dispatch by a memory-based global differential evolution and a repair technique of constraint handling," Energy, Elsevier, vol. 147(C), pages 59-80.
    3. Yuan, Xiaohui & Su, Anjun & Yuan, Yanbin & Nie, Hao & Wang, Liang, 2009. "An improved PSO for dynamic load dispatch of generators with valve-point effects," Energy, Elsevier, vol. 34(1), pages 67-74.
    4. Fesanghary, M. & Ardehali, M.M., 2009. "A novel meta-heuristic optimization methodology for solving various types of economic dispatch problem," Energy, Elsevier, vol. 34(6), pages 757-766.
    5. Basu, M., 2014. "Teaching–learning-based optimization algorithm for multi-area economic dispatch," Energy, Elsevier, vol. 68(C), pages 21-28.
    6. Lorestani, A. & Ardehali, M.M., 2018. "Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm," Renewable Energy, Elsevier, vol. 119(C), pages 490-503.
    7. Sadeghian, H.R. & Ardehali, M.M., 2016. "A novel approach for optimal economic dispatch scheduling of integrated combined heat and power systems for maximum economic profit and minimum environmental emissions based on Benders decomposition," Energy, Elsevier, vol. 102(C), pages 10-23.
    8. Lorestani, A. & Ardehali, M.M., 2018. "Optimal integration of renewable energy sources for autonomous tri-generation combined cooling, heating and power system based on evolutionary particle swarm optimization algorithm," Energy, Elsevier, vol. 145(C), pages 839-855.
    9. Adarsh, B.R. & Raghunathan, T. & Jayabarathi, T. & Yang, Xin-She, 2016. "Economic dispatch using chaotic bat algorithm," Energy, Elsevier, vol. 96(C), pages 666-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Heng & Hu, Xiao & Cheng, Haozhong & Zhang, Shenxi & Hong, Shaoyun & Gu, Qingfa, 2021. "Coordinated scheduling of generators and tie lines in multi-area power systems under wind energy uncertainty," Energy, Elsevier, vol. 222(C).
    2. Yuan, Guanghui & Yang, Weixin, 2019. "Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent Algorithms (PSO and AFSA)," Energy, Elsevier, vol. 183(C), pages 926-935.
    3. Song, Dongran & Liu, Junbo & Yang, Jian & Su, Mei & Wang, Yun & Yang, Xuebing & Huang, Lingxiang & Joo, Young Hoon, 2020. "Optimal design of wind turbines on high-altitude sites based on improved Yin-Yang pair optimization," Energy, Elsevier, vol. 193(C).
    4. Chen, Xu & Lu, Qi & Yuan, Ye & He, Kaixun, 2024. "A novel derivative search political optimization algorithm for multi-area economic dispatch incorporating renewable energy," Energy, Elsevier, vol. 300(C).
    5. Zou, Dexuan & Gong, Dunwei, 2022. "Differential evolution based on migrating variables for the combined heat and power dynamic economic dispatch," Energy, Elsevier, vol. 238(PA).
    6. Meng, Anbo & Zeng, Cong & Xu, Xuancong & Ding, Weifeng & Liu, Shiyun & Chen, De & Yin, Hao, 2022. "Decentralized power economic dispatch by distributed crisscross optimization in multi-agent system," Energy, Elsevier, vol. 246(C).
    7. Naveed Ahmed Malik & Ching-Lung Chang & Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Chi-Min Shu & Sultan S. Alshamrani, 2022. "Knacks of Fractional Order Swarming Intelligence for Parameter Estimation of Harmonics in Electrical Systems," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    8. Lorestani, Alireza & Gharehpetian, G.B. & Nazari, Mohammad Hassan, 2019. "Optimal sizing and techno-economic analysis of energy- and cost-efficient standalone multi-carrier microgrid," Energy, Elsevier, vol. 178(C), pages 751-764.
    9. Dai, Wei & Yang, Zhifang & Yu, Juan & Cui, Wei & Li, Wenyuan & Li, Jinghua & Liu, Hui, 2021. "Economic dispatch of interconnected networks considering hidden flexibility," Energy, Elsevier, vol. 223(C).
    10. Gao, Hongchao & Jin, Tai & Feng, Cheng & Li, Chuyi & Chen, Qixin & Kang, Chongqing, 2024. "Review of virtual power plant operations: Resource coordination and multidimensional interaction," Applied Energy, Elsevier, vol. 357(C).
    11. Sharifian, Yeganeh & Abdi, Hamdi, 2023. "Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm," Energy, Elsevier, vol. 267(C).
    12. Dhivya Swaminathan & Arul Rajagopalan & Oscar Danilo Montoya & Savitha Arul & Luis Fernando Grisales-Noreña, 2023. "Distribution Network Reconfiguration Based on Hybrid Golden Flower Algorithm for Smart Cities Evolution," Energies, MDPI, vol. 16(5), pages 1-24, March.
    13. Ali S. Alghamdi, 2022. "Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems," Energies, MDPI, vol. 15(11), pages 1-19, May.
    14. Wang, Yajun & Wang, Jidong & Cao, Man & Kong, Xiangyu & Abderrahim, Bouchedjira & Yuan, Long & Vartosh, Aris, 2023. "Dynamic emission dispatch considering the probabilistic model with multiple smart energy system players based on a developed fuzzy theory-based harmony search algorithm," Energy, Elsevier, vol. 269(C).
    15. Fatma Yaprakdal & Mustafa Baysal & Amjad Anvari-Moghaddam, 2019. "Optimal Operational Scheduling of Reconfigurable Microgrids in Presence of Renewable Energy Sources," Energies, MDPI, vol. 12(10), pages 1-17, May.
    16. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    17. Song, Dongran & Liu, Junbo & Yang, Yinggang & Yang, Jian & Su, Mei & Wang, Yun & Gui, Ning & Yang, Xuebing & Huang, Lingxiang & Hoon Joo, Young, 2021. "Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm," Energy, Elsevier, vol. 221(C).
    18. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Yin, He, 2019. "Optimal generation scheduling for a deep-water semi-submersible drilling platform with uncertain renewable power generation and loads," Energy, Elsevier, vol. 181(C), pages 897-907.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    2. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    3. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    4. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    5. Elattar, Ehab E., 2019. "Environmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithm," Energy, Elsevier, vol. 171(C), pages 256-269.
    6. Panigrahi, B.K. & Ravikumar Pandi, V. & Das, Sanjoy & Das, Swagatam, 2010. "Multiobjective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem," Energy, Elsevier, vol. 35(12), pages 4761-4770.
    7. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    8. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    9. Chen, Xu & Tang, Guowei, 2022. "Solving static and dynamic multi-area economic dispatch problems using an improved competitive swarm optimization algorithm," Energy, Elsevier, vol. 238(PC).
    10. Sharifian, Yeganeh & Abdi, Hamdi, 2023. "Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm," Energy, Elsevier, vol. 267(C).
    11. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    12. Dong, Shiqian & Long, He & Guan, Jingxuan & Jiang, Lina & Zhuang, Chaoqun & Gao, Yafeng & Di, Yanqiang, 2024. "Performance investigation of a hybrid PV/T collector with a novel trapezoidal fluid channel," Energy, Elsevier, vol. 288(C).
    13. Shahbazbegian, Vahid & Dehghani, Farnam & Shafiyi, Mohammad Agha & Shafie-khah, Miadreza & Laaksonen, Hannu & Ameli, Hossein, 2023. "Techno-economic assessment of energy storage systems in multi-energy microgrids utilizing decomposition methodology," Energy, Elsevier, vol. 283(C).
    14. Arandian, B. & Ardehali, M.M., 2017. "Effects of environmental emissions on optimal combination and allocation of renewable and non-renewable CHP technologies in heat and electricity distribution networks based on improved particle swarm ," Energy, Elsevier, vol. 140(P1), pages 466-480.
    15. de Athayde Costa e Silva, Marsil & Klein, Carlos Eduardo & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2013. "Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem," Energy, Elsevier, vol. 53(C), pages 14-21.
    16. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    17. Kamani, D. & Ardehali, M.M., 2023. "Long-term forecast of electrical energy consumption with considerations for solar and wind energy sources," Energy, Elsevier, vol. 268(C).
    18. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    19. Yaşar, Celal & Özyön, Serdar, 2011. "A new hybrid approach for nonconvex economic dispatch problem with valve-point effect," Energy, Elsevier, vol. 36(10), pages 5838-5845.
    20. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:710-724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.