IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v178y2020icp259-289.html
   My bibliography  Save this article

Quantum-like mutation-induced dragonfly-inspired optimization approach

Author

Listed:
  • Yu, Caiyang
  • Cai, Zhennao
  • Ye, Xiaojia
  • Wang, Mingjing
  • Zhao, Xuehua
  • Liang, Guoxi
  • Chen, Huiling
  • Li, Chengye

Abstract

This study proposed an improved dragonfly algorithm (DA). This algorithm is a recently proposed metaheuristic optimizer inspired by swarming behaviors of dragonflies, which has reasonably achieved satisfactory results in dealing with engineering, education, and other fields. However, the original method will show some shortcomings in convergence speed or falling into local optimum. Given these shortcomings, this paper proposes an improved optimizer to balance the relationship between exploitation and exploration and mitigate any deficiency. First, by implementing the idea of the quantum rotation gate, the swarm of agents can be shifted to a position more conducive to the optimal value. Then, Gaussian mutation is adopted to improve the swarm’s ability to mutate and realize its diversity, which enables the primary method to have a strong local search capability. The proposed method was compared against six other common meta-heuristics and five state-of-the-art algorithms on a comprehensive set of nineteen functions selected from twenty-three classic benchmark problems and thirty IEEE (Institute of Electrical and Electronics Engineers) CEC (Congress on Evolutionary Computation) 2014 benchmark tasks. To verify the effectiveness of the approach, the non-parametric statistical Wilcoxon signed-rank and Friedman tests were performed to validate the significance of the proposed method against other counterparts. The results of experimental simulations demonstrate that two introduced strategies can significantly improve the exploitative and exploratory tendencies of the original algorithm. Furthermore, the convergence speed of the conventional approach has been improved to a large extent. Additionally, quantum-behaved and Gaussian mutational dragonfly algorithm (QGDA) is utilized as a searching core in a wrapper feature selection technique, and it is compared with other advanced feature selection methods. The results show that QGDA achieves substantial superiority in feature selection through optimum fitness and minimum error rate. Also, the results of QGDA on the three classical engineering design problems have demonstrated that the proposed method can effectively solve these constraints problems. It is encouraging that the proposed method can be used as a useful, auxiliary tool for solving complex optimization problems.

Suggested Citation

  • Yu, Caiyang & Cai, Zhennao & Ye, Xiaojia & Wang, Mingjing & Zhao, Xuehua & Liang, Guoxi & Chen, Huiling & Li, Chengye, 2020. "Quantum-like mutation-induced dragonfly-inspired optimization approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 259-289.
  • Handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:259-289
    DOI: 10.1016/j.matcom.2020.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420302147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Huiling & Wang, Mingjing & Zhao, Xuehua, 2020. "A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    2. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    3. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
    4. Fister, Iztok & Iglesias, Andres & Galvez, Akemi & Del Ser, Javier & Osaba, Eneko & Fister, Iztok & Perc, Matjaž & Slavinec, Mitja, 2019. "Novelty search for global optimization," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 865-881.
    5. Fister, Iztok & Perc, Matjaž & Kamal, Salahuddin M. & Fister, Iztok, 2015. "A review of chaos-based firefly algorithms: Perspectives and research challenges," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 155-165.
    6. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    7. Smarajit Ghosh & Vinod Karar, 2018. "Assimilation of Optimal Sized Hybrid Photovoltaic-Biomass System by Dragonfly Algorithm with Grid," Energies, MDPI, vol. 11(7), pages 1-19, July.
    8. Adarsh, B.R. & Raghunathan, T. & Jayabarathi, T. & Yang, Xin-She, 2016. "Economic dispatch using chaotic bat algorithm," Energy, Elsevier, vol. 96(C), pages 666-675.
    9. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2017. "Multi-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system scheduling," Energy, Elsevier, vol. 131(C), pages 165-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gauri Thakur & Ashok Pal & Nitin Mittal & Asha Rajiv & Rohit Salgotra, 2024. "Slime Mould Algorithm Based on a Gaussian Mutation for Solving Constrained Optimization Problems," Mathematics, MDPI, vol. 12(10), pages 1-37, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Ninness, Brett, 2024. "Design of fractional-order hammerstein control auto-regressive model for heat exchanger system identification: Treatise on fuzzy-evolutionary computing," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    3. Ren, Hao & Li, Jun & Chen, Huiling & Li, ChenYang, 2021. "Adaptive levy-assisted salp swarm algorithm: Analysis and optimization case studies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 380-409.
    4. Anping Lin & Wei Sun, 2018. "Multi-Leader Comprehensive Learning Particle Swarm Optimization with Adaptive Mutation for Economic Load Dispatch Problems," Energies, MDPI, vol. 12(1), pages 1-27, December.
    5. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    6. Kostić, Srđan & Vasović, Nebojša & Sunarić, Duško, 2015. "A new approach to grid search method in slope stability analysis using Box–Behnken statistical design," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 425-437.
    7. Wei Sun & Junjian Zhang, 2020. "Carbon Price Prediction Based on Ensemble Empirical Mode Decomposition and Extreme Learning Machine Optimized by Improved Bat Algorithm Considering Energy Price Factors," Energies, MDPI, vol. 13(13), pages 1-22, July.
    8. Jian Zhao & Bochen Zhang & Xiwang Guo & Liang Qi & Zhiwu Li, 2022. "Self-Adapting Spherical Search Algorithm with Differential Evolution for Global Optimization," Mathematics, MDPI, vol. 10(23), pages 1-31, November.
    9. Laith Abualigah & Ali Diabat & Davor Svetinovic & Mohamed Abd Elaziz, 2023. "Boosted Harris Hawks gravitational force algorithm for global optimization and industrial engineering problems," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2693-2728, August.
    10. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    11. El-Sattar, Hoda Abd & Kamel, Salah & Hassan, Mohamed H. & Jurado, Francisco, 2022. "An effective optimization strategy for design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 260(C).
    12. Naila & Shaikh Saaqib Haroon & Shahzad Hassan & Salman Amin & Intisar Ali Sajjad & Asad Waqar & Muhammad Aamir & Muneeb Yaqoob & Imtiaz Alam, 2018. "Multiple Fuel Machines Power Economic Dispatch Using Stud Differential Evolution," Energies, MDPI, vol. 11(6), pages 1-20, May.
    13. Shahenda Sarhan & Ragab El-Sehiemy & Amlak Abaza & Mona Gafar, 2022. "Turbulent Flow of Water-Based Optimization for Solving Multi-Objective Technical and Economic Aspects of Optimal Power Flow Problems," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
    14. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    15. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    16. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    17. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    18. Mario Šipoš & Zvonimir Klaić & Emmanuel Karlo Nyarko & Krešimir Fekete, 2021. "Determining the Optimal Location and Number of Voltage Dip Monitoring Devices Using the Binary Bat Algorithm," Energies, MDPI, vol. 14(1), pages 1-13, January.
    19. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    20. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:259-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.