IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222014141.html
   My bibliography  Save this article

Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options

Author

Listed:
  • Xu, Shengping
  • Xiong, Guojiang
  • Mohamed, Ali Wagdy
  • Bouchekara, Houssem R.E.H.

Abstract

Economic dispatch (ED) plays an essential role in the operation and planning of power systems. Mathematically, it turns to be a multi-constraint, multimodal, non-linear, and multivariate coupling optimization problem when considering the valve-point effects and multi-fuel options. In this paper, an improved comprehensive learning particle swarm optimization (CLPSO) named FV-ICLPSO is presented to solve it. FV-ICLPSO introduces three improved components to conquer the issue of slow convergence rate of CLPSO: (1) an adaptive strategy by using both the iteration and problem's dimensionality is presented to tune the learning probability; (2) an adaptive method is designed to give different particles in different levels different scopes to pick the source particles to construct their learning exemplars; and (3) an improved velocity updating formula based on forgetting the previous velocity is proposed to guide particles to fly towards more promising areas. FV-ICLPSO is first validated on thirty CEC2014 benchmark numerical functions and then applied to eight ED cases with different units from 10-Unit to 640-Unit. Simulation results demonstrate the strong competitiveness of FV-ICLPSO compared with CLPSO, other state-of-the-art algorithms, and the reported results of some recently published ED solution methods. Furthermore, the effect of the three improved components on FV-ICLPSO is also investigated.

Suggested Citation

  • Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222014141
    DOI: 10.1016/j.energy.2022.124511
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222014141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin-gang, Zhao & Ze-qi, Zhang & Yi-min, Xie & Jin, Meng, 2020. "Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization," Energy, Elsevier, vol. 195(C).
    2. Meng, Anbo & Li, Jinbei & Yin, Hao, 2016. "An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects," Energy, Elsevier, vol. 113(C), pages 1147-1161.
    3. Tang, Xiongmin & Li, Zhengshuo & Xu, Xuancong & Zeng, Zhijun & Jiang, Tianhong & Fang, Wenrui & Meng, Anbo, 2022. "Multi-objective economic emission dispatch based on an extended crisscross search optimization algorithm," Energy, Elsevier, vol. 244(PA).
    4. Chen, Xu, 2020. "Novel dual-population adaptive differential evolution algorithm for large-scale multi-fuel economic dispatch with valve-point effects," Energy, Elsevier, vol. 203(C).
    5. Xiong, Guojiang & Shi, Dongyuan & Duan, Xianzhong, 2013. "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems," Applied Energy, Elsevier, vol. 111(C), pages 801-811.
    6. Adarsh, B.R. & Raghunathan, T. & Jayabarathi, T. & Yang, Xin-She, 2016. "Economic dispatch using chaotic bat algorithm," Energy, Elsevier, vol. 96(C), pages 666-675.
    7. Mohammadian, M. & Lorestani, A. & Ardehali, M.M., 2018. "Optimization of single and multi-areas economic dispatch problems based on evolutionary particle swarm optimization algorithm," Energy, Elsevier, vol. 161(C), pages 710-724.
    8. Kheshti, Mostafa & Kang, Xiaoning & Bie, Zhaohong & Jiao, Zaibin & Wang, Xiuli, 2017. "An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units," Energy, Elsevier, vol. 129(C), pages 1-15.
    9. Basu, M., 2022. "Fuel constrained combined heat and power dynamic dispatch using horse herd optimization algorithm," Energy, Elsevier, vol. 246(C).
    10. Chen, Xu & Xu, Bin & Mei, Congli & Ding, Yuhan & Li, Kangji, 2018. "Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation," Applied Energy, Elsevier, vol. 212(C), pages 1578-1588.
    11. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    12. Dai, Canyun & Hu, Zhongbo & Su, Qinghua, 2022. "An adaptive hybrid backtracking search optimization algorithm for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 239(PE).
    13. Xiong, Guojiang & Shuai, Maohang & Hu, Xiao, 2022. "Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization," Energy, Elsevier, vol. 244(PB).
    14. Niknam, Taher & Mojarrad, Hasan Doagou & Meymand, Hamed Zeinoddini & Firouzi, Bahman Bahmani, 2011. "A new honey bee mating optimization algorithm for non-smooth economic dispatch," Energy, Elsevier, vol. 36(2), pages 896-908.
    15. Fraga, Eric S. & Yang, Lingjian & Papageorgiou, Lazaros G., 2012. "On the modelling of valve point loadings for power electricity dispatch," Applied Energy, Elsevier, vol. 91(1), pages 301-303.
    16. Jayabarathi, T. & Raghunathan, T. & Adarsh, B.R. & Suganthan, Ponnuthurai Nagaratnam, 2016. "Economic dispatch using hybrid grey wolf optimizer," Energy, Elsevier, vol. 111(C), pages 630-641.
    17. Basu, M., 2014. "Teaching–learning-based optimization algorithm for multi-area economic dispatch," Energy, Elsevier, vol. 68(C), pages 21-28.
    18. Chen, Xu & Tang, Guowei, 2022. "Solving static and dynamic multi-area economic dispatch problems using an improved competitive swarm optimization algorithm," Energy, Elsevier, vol. 238(PC).
    19. Singh, Diljinder & Dhillon, J.S., 2019. "Ameliorated grey wolf optimization for economic load dispatch problem," Energy, Elsevier, vol. 169(C), pages 398-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aokang Pang & Huijun Liang & Chenhao Lin & Lei Yao, 2023. "A Surrogate-Assisted Adaptive Bat Algorithm for Large-Scale Economic Dispatch," Energies, MDPI, vol. 16(2), pages 1-23, January.
    2. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Jalili, Mahdi, 2023. "Optimization of integrated load dispatch in multi-fueled renewable rich power systems using fractal firefly algorithm," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    2. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
    3. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    4. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    5. Meng, Anbo & Xu, Xuancong & Zhang, Zhan & Zeng, Cong & Liang, Ruduo & Zhang, Zheng & Wang, Xiaolin & Yan, Baiping & Yin, Hao & Luo, Jianqiang, 2022. "Solving high-dimensional multi-area economic dispatch problem by decoupled distributed crisscross optimization algorithm with population cross generation strategy," Energy, Elsevier, vol. 258(C).
    6. Ali S. Alghamdi, 2022. "Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems," Energies, MDPI, vol. 15(11), pages 1-19, May.
    7. El-Sayed, Wael T. & El-Saadany, Ehab F. & Zeineldin, Hatem H. & Al-Sumaiti, Ameena S., 2020. "Fast initialization methods for the nonconvex economic dispatch problem," Energy, Elsevier, vol. 201(C).
    8. Chen, Xu, 2020. "Novel dual-population adaptive differential evolution algorithm for large-scale multi-fuel economic dispatch with valve-point effects," Energy, Elsevier, vol. 203(C).
    9. Al-Bahrani, Loau Tawfak & Chandra Patra, Jagdish, 2018. "Multi-gradient PSO algorithm for optimization of multimodal, discontinuous and non-convex fuel cost function of thermal generating units under various power constraints in smart power grid," Energy, Elsevier, vol. 147(C), pages 1070-1091.
    10. Kheshti, Mostafa & Kang, Xiaoning & Bie, Zhaohong & Jiao, Zaibin & Wang, Xiuli, 2017. "An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units," Energy, Elsevier, vol. 129(C), pages 1-15.
    11. Mohammad Lotfi Akbarabadi & Reza Sirjani, 2023. "Achieving Sustainability and Cost-Effectiveness in Power Generation: Multi-Objective Dispatch of Solar, Wind, and Hydro Units," Sustainability, MDPI, vol. 15(3), pages 1-33, January.
    12. Chen, Xu & Lu, Qi & Yuan, Ye & He, Kaixun, 2024. "A novel derivative search political optimization algorithm for multi-area economic dispatch incorporating renewable energy," Energy, Elsevier, vol. 300(C).
    13. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    14. Naila & Shaikh Saaqib Haroon & Shahzad Hassan & Salman Amin & Intisar Ali Sajjad & Asad Waqar & Muhammad Aamir & Muneeb Yaqoob & Imtiaz Alam, 2018. "Multiple Fuel Machines Power Economic Dispatch Using Stud Differential Evolution," Energies, MDPI, vol. 11(6), pages 1-20, May.
    15. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    16. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    17. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    18. SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).
    19. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
    20. Meng, Anbo & Zeng, Cong & Xu, Xuancong & Ding, Weifeng & Liu, Shiyun & Chen, De & Yin, Hao, 2022. "Decentralized power economic dispatch by distributed crisscross optimization in multi-agent system," Energy, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222014141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.