IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2078-d162926.html
   My bibliography  Save this article

A Decentralized Local Flexibility Market Considering the Uncertainty of Demand

Author

Listed:
  • Ayman Esmat

    (Department of Electrical Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain)

  • Julio Usaola

    (Department of Electrical Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain)

  • Mª Ángeles Moreno

    (Department of Electrical Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain)

Abstract

The role of the distribution system operator (DSO) is evolving with the increasing possibilities of demand management and flexibility. Rather than implementing conventional approaches to mitigate network congestions, such as upgrading existing assets, demand flexibility services have been gaining much attention lately as a solution to defer the need for network reinforcements. In this paper, a framework for a decentralized local market that enables flexibility services trading at the distribution level is introduced. This market operates on two timeframes, day-ahead and real-time and it allows the DSO to procure flexibility services which can help in its congestion management process. The contribution of this work lies in considering the uncertainty of demand during the day-ahead period. As a result, we introduce a probabilistic process that supports the DSO in assessing the true need of obtaining flexibility services based on the probability of congestion occurrence in the following day of operation. Besides being able to procure firm flexibility for high probable congestions, a new option is introduced, called the right-to-use option, which enables the DSO to reserve a specific amount of flexibility, to be called upon later if necessary, for congestions that have medium probabilities of taking place. In addition, a real-time market for flexibility trading is presented, which allows the DSO to procure flexibility services for unforeseen congestions with short notice. Also, the effect of the penetration level of flexibility on the DSO’s total cost is discussed and assessed. Finally, a case study is carried out for a real distribution network feeder in Spain to illustrate the impact of the proposed flexibility framework on the DSO’s congestion management process.

Suggested Citation

  • Ayman Esmat & Julio Usaola & Mª Ángeles Moreno, 2018. "A Decentralized Local Flexibility Market Considering the Uncertainty of Demand," Energies, MDPI, vol. 11(8), pages 1-32, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2078-:d:162926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayman Esmat & Julio Usaola & María Ángeles Moreno, 2018. "Distribution-Level Flexibility Market for Congestion Management," Energies, MDPI, vol. 11(5), pages 1-24, April.
    2. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    3. Pavani Ponnaganti & Jayakrishnan R Pillai & Birgitte Bak‐Jensen, 2018. "Opportunities and challenges of demand response in active distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(1), January.
    4. Ramos, Ariana & De Jonghe, Cedric & Gómez, Virginia & Belmans, Ronnie, 2016. "Realizing the smart grid's potential: Defining local markets for flexibility," Utilities Policy, Elsevier, vol. 40(C), pages 26-35.
    5. Satchwell, Andrew & Hledik, Ryan, 2014. "Analytical frameworks to incorporate demand response in long-term resource planning," Utilities Policy, Elsevier, vol. 28(C), pages 73-81.
    6. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    7. Bergaentzlé, Claire & Clastres, Cédric & Khalfallah, Haikel, 2014. "Demand-side management and European environmental and energy goals: An optimal complementary approach," Energy Policy, Elsevier, vol. 67(C), pages 858-869.
    8. Vallés, Mercedes & Bello, Antonio & Reneses, Javier & Frías, Pablo, 2018. "Probabilistic characterization of electricity consumer responsiveness to economic incentives," Applied Energy, Elsevier, vol. 216(C), pages 296-310.
    9. Xiaolin Ayón & María Ángeles Moreno & Julio Usaola, 2017. "Aggregators’ Optimal Bidding Strategy in Sequential Day-Ahead and Intraday Electricity Spot Markets," Energies, MDPI, vol. 10(4), pages 1-20, April.
    10. Wang, Fei & Xu, Hanchen & Xu, Ti & Li, Kangping & Shafie-khah, Miadreza & Catalão, João. P.S., 2017. "The values of market-based demand response on improving power system reliability under extreme circumstances," Applied Energy, Elsevier, vol. 193(C), pages 220-231.
    11. Jamasb,Tooraj & Pollitt,Michael G. (ed.), 2011. "The Future of Electricity Demand," Cambridge Books, Cambridge University Press, number 9781107008502.
    12. Martínez Ceseña, Eduardo A. & Good, Nicholas & Mancarella, Pierluigi, 2015. "Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users," Energy Policy, Elsevier, vol. 82(C), pages 222-232.
    13. Ruester, Sophia & Schwenen, Sebastian & Batlle, Carlos & Pérez-Arriaga, Ignacio, 2014. "From distribution networks to smart distribution systems: Rethinking the regulation of European electricity DSOs," Utilities Policy, Elsevier, vol. 31(C), pages 229-237.
    14. Pengwei Su & Xue Tian & Yan Wang & Shuai Deng & Jun Zhao & Qingsong An & Yongzhen Wang, 2017. "Recent Trends in Load Forecasting Technology for the Operation Optimization of Distributed Energy System," Energies, MDPI, vol. 10(9), pages 1-13, August.
    15. Claire Bergaentzlé & Cédric Clastres & Haikel Khalfallah, 2014. "Demand-side management and European environmental and energy goals: an optimal complementary approach," Post-Print halshs-00928678, HAL.
    16. Sila Kiliccote & Daniel Olsen & Michael D. Sohn & Mary Ann Piette, 2016. "Characterization of demand response in the commercial, industrial, and residential sectors in the United States," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 288-304, May.
    17. Burger, Scott & Chaves-Ávila, Jose Pablo & Batlle, Carlos & Pérez-Arriaga, Ignacio J., 2017. "A review of the value of aggregators in electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 395-405.
    18. Torriti, Jacopo & Hassan, Mohamed G. & Leach, Matthew, 2010. "Demand response experience in Europe: Policies, programmes and implementation," Energy, Elsevier, vol. 35(4), pages 1575-1583.
    19. Yin, Rongxin & Kara, Emre C. & Li, Yaping & DeForest, Nicholas & Wang, Ke & Yong, Taiyou & Stadler, Michael, 2016. "Quantifying flexibility of commercial and residential loads for demand response using setpoint changes," Applied Energy, Elsevier, vol. 177(C), pages 149-164.
    20. Wu, Fei & Sioshansi, Ramteen, 2017. "A two-stage stochastic optimization model for scheduling electric vehicle charging loads to relieve distribution-system constraints," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 55-82.
    21. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    22. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
    23. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    24. Drysdale, Brian & Wu, Jianzhong & Jenkins, Nick, 2015. "Flexible demand in the GB domestic electricity sector in 2030," Applied Energy, Elsevier, vol. 139(C), pages 281-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domagoj Badanjak & Hrvoje Pandžić, 2021. "Distribution-Level Flexibility Markets—A Review of Trends, Research Projects, Key Stakeholders and Open Questions," Energies, MDPI, vol. 14(20), pages 1-26, October.
    2. Shantanu Chakraborty & Remco Verzijlbergh & Kyri Baker & Milos Cvetkovic & Laurens De Vries & Zofia Lukszo, 2020. "A Coordination Mechanism For Reducing Price Spikes in Distribution Grids," Energies, MDPI, vol. 13(10), pages 1-24, May.
    3. Cramer, Wilhelm & Schumann, Klemens & Andres, Michael & Vertgewall, Chris & Monti, Antonello & Schreck, Sebastian & Metzger, Michael & Jessenberger, Stefan & Klaus, Joachim & Brunner, Christoph & Heri, 2021. "A simulative framework for a multi-regional assessment of local energy markets – A case of large-scale electric vehicle deployment in Germany," Applied Energy, Elsevier, vol. 299(C).
    4. Hennig, Roman J. & de Vries, Laurens J. & Tindemans, Simon H., 2024. "Risk vs. restriction—An investigation of capacity-limitation based congestion management in electric distribution grids," Energy Policy, Elsevier, vol. 186(C).
    5. Aguado, José A. & Paredes, Ángel, 2023. "Coordinated and decentralized trading of flexibility products in Inter-DSO Local Electricity Markets via ADMM," Applied Energy, Elsevier, vol. 337(C).
    6. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Hennig, Roman J. & de Vries, Laurens J. & Tindemans, Simon H., 2023. "Congestion management in electricity distribution networks: Smart tariffs, local markets and direct control," Utilities Policy, Elsevier, vol. 85(C).
    8. Theo Dronne & Fabien Roques & Marcelo Saguan, 2021. "Local Flexibility Markets for Distribution Network Congestion-Management in Center-Western Europe: Which Design for Which Needs?," Energies, MDPI, vol. 14(14), pages 1-18, July.
    9. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    10. Nayeem Rahman & Rodrigo Rabetino & Arto Rajala & Jukka Partanen, 2021. "Ushering in a New Dawn: Demand-Side Local Flexibility Platform Governance and Design in the Finnish Energy Markets," Energies, MDPI, vol. 14(15), pages 1-23, July.
    11. Babagheibi, Mahsa & Jadid, Shahram & Kazemi, Ahad, 2023. "An Incentive-based robust flexibility market for congestion management of an active distribution system to use the free capacity of Microgrids," Applied Energy, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayman Esmat & Julio Usaola & María Ángeles Moreno, 2018. "Distribution-Level Flexibility Market for Congestion Management," Energies, MDPI, vol. 11(5), pages 1-24, April.
    2. Jan Stede & Karin Arnold & Christa Dufter & Georg Holtz & Serafin von Roon & Jörn C. Richstein, 2020. "The Role of Aggregators in Facilitating Industrial Demand Response: Evidence from Germany," Discussion Papers of DIW Berlin 1840, DIW Berlin, German Institute for Economic Research.
    3. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    4. Stede, Jan & Arnold, Karin & Dufter, Christa & Holtz, Georg & von Roon, Serafin & Richstein, Jörn C., 2020. "The role of aggregators in facilitating industrial demand response: Evidence from Germany," Energy Policy, Elsevier, vol. 147(C).
    5. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    6. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    7. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    8. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    9. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    10. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    11. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    12. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    13. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    14. Erik Heilmann & Nikolai Klempp & Kai Hufendiek & Heike Wetzel, 2022. "Long-term Contracts for Network-supportive Flexibility in Local Flexibility Markets," MAGKS Papers on Economics 202224, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    15. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    16. Héctor Marañón-Ledesma & Asgeir Tomasgard, 2019. "Analyzing Demand Response in a Dynamic Capacity Expansion Model for the European Power Market," Energies, MDPI, vol. 12(15), pages 1-24, August.
    17. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    18. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," Applied Energy, Elsevier, vol. 278(C).
    19. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    20. Ma, Yiqun, 2016. "Demand Response Potential of Electricity End-users Facing Real Time Pricing," Research Report 16019-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2078-:d:162926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.