IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2348-d168053.html
   My bibliography  Save this article

RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical Axis Water Turbine

Author

Listed:
  • Omar D. Lopez Mejia

    (Department of Mechanical Engineering, Universidad de los Andes, Bogotá 111711, Colombia)

  • Jhon J. Quiñones

    (Department of Mechanical Engineering, Universidad de los Andes, Bogotá 111711, Colombia)

  • Santiago Laín

    (PAI+ Group, Department of Energetics and Mechanics, Universidad Autónoma de Occidente, Cali 760030 Colombia)

Abstract

Nowadays, the global energy crisis has encouraged the use of alternative sources like the energy available in the water currents of seas and rivers. The vertical axis water turbine (VAWT) is an interesting option to harness this energy due to its advantages of facile installation, maintenance and operation. However, it is known that its efficiency is lower than that of other types of turbines due to the unsteady effects present in its flow physics. This work aims to analyse through Computational Fluid Dynamics (CFD) the turbulent flow dynamics around a small scale VAWT confined in a hydrodynamic tunnel. The simulations were developed using the Unsteady Reynolds Averaged Navier Stokes (URANS), Detached Eddy Simulation (DES) and Delayed Detached Eddy Simulation (DDES) turbulence models, all of them based on k - ω Shear Stress Transport (SST). The results and analysis of the simulations are presented, illustrating the influence of the tip speed ratio. The numerical results of the URANS model show a similar behaviour with respect to the experimental power curve of the turbine using a lower number of elements than those used in the DES and DDES models. Finally, with the help of both the Q-criterion and field contours it is observed that the refinements made in the mesh adaptation process for the DES and DDES models improve the identification of the scales of the vorticity structures and the flow phenomena present on the near and far wake of the turbine.

Suggested Citation

  • Omar D. Lopez Mejia & Jhon J. Quiñones & Santiago Laín, 2018. "RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical Axis Water Turbine," Energies, MDPI, vol. 11(9), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2348-:d:168053
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maître, T. & Amet, E. & Pellone, C., 2013. "Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments," Renewable Energy, Elsevier, vol. 51(C), pages 497-512.
    2. Antheaume, Sylvain & Maître, Thierry & Achard, Jean-Luc, 2008. "Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions," Renewable Energy, Elsevier, vol. 33(10), pages 2186-2198.
    3. Marsh, Philip & Ranmuthugala, Dev & Penesis, Irene & Thomas, Giles, 2015. "Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces," Renewable Energy, Elsevier, vol. 83(C), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Runqiang Zhang & Zhenwei Huang & Lei Tan & Yuchuan Wang & Erqi Wang, 2020. "Energy Performance and Radial Force of Vertical Axis Darrieus Turbine for Ocean Energy," Energies, MDPI, vol. 13(20), pages 1-15, October.
    2. Stefania Zanforlin & Fulvio Buzzi & Marika Francesconi, 2019. "Performance Analysis of Hydrofoil Shaped and Bi-Directional Diffusers for Cross Flow Tidal Turbines in Single and Double-Rotor Configurations," Energies, MDPI, vol. 12(2), pages 1-25, January.
    3. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    4. Pierre-Luc Delafin & François Deniset & Jacques André Astolfi & Frédéric Hauville, 2021. "Performance Improvement of a Darrieus Tidal Turbine with Active Variable Pitch," Energies, MDPI, vol. 14(3), pages 1-18, January.
    5. Delafin, P.-L. & Nishino, T. & Kolios, A. & Wang, L., 2017. "Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines," Renewable Energy, Elsevier, vol. 109(C), pages 564-575.
    6. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    7. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    8. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
    9. Tunio, Intizar Ali & Shah, Madad Ali & Hussain, Tanweer & Harijan, Khanji & Mirjat, Nayyar Hussain & Memon, Abdul Hameed, 2020. "Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine," Renewable Energy, Elsevier, vol. 153(C), pages 143-154.
    10. Hand, Brian & Cashman, Andrew, 2018. "Aerodynamic modeling methods for a large-scale vertical axis wind turbine: A comparative study," Renewable Energy, Elsevier, vol. 129(PA), pages 12-31.
    11. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    12. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    13. Longfeng Hou & Sheng Shen & Ying Wang, 2021. "Numerical Study on Aerodynamic Performance of Different Forms of Adaptive Blades for Vertical Axis Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    14. Chen, J. & Yang, H.X. & Liu, C.P. & Lau, C.H. & Lo, M., 2013. "A novel vertical axis water turbine for power generation from water pipelines," Energy, Elsevier, vol. 54(C), pages 184-193.
    15. Zhang, Yanfeng & Li, Qing'an & Zhu, Xinyu & Song, Xiaowen & Cai, Chang & Zhou, Teng & Kamada, Yasunari & Maeda, Takao & Wang, Ye & Guo, Zhiping, 2022. "Effect of the bionic blade on the flow field of a straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 258(C).
    16. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Tommy Andy Tameghe & Gabriel Ekemb, 2015. "A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development," Energies, MDPI, vol. 8(10), pages 1-34, September.
    17. Antar, E. & Elkhoury, M., 2019. "Parametric sizing optimization process of a casing for a Savonius Vertical Axis Wind Turbine," Renewable Energy, Elsevier, vol. 136(C), pages 127-138.
    18. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    19. Zhen Liu & Hengliang Qu & Hongda Shi, 2016. "Numerical Study on Self-Starting Performance of Darrieus Vertical Axis Turbine for Tidal Stream Energy Conversion," Energies, MDPI, vol. 9(10), pages 1-15, September.
    20. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2020. "Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates," Renewable Energy, Elsevier, vol. 150(C), pages 31-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2348-:d:168053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.