IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p1969-d160694.html
   My bibliography  Save this article

Single-Tube and Multi-Turn Coil Near-Field Wireless Power Transfer for Low-Power Home Appliances

Author

Listed:
  • Aqeel Mahmood Jawad

    (Centre of Advanced Electronic & Communication Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
    Department of Computer Communication Engineering, Al-Rafidain University College, Filastin, Baghdad 10064, Iraq)

  • Rosdiadee Nordin

    (Centre of Advanced Electronic & Communication Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia)

  • Sadik Kamel Gharghan

    (Department of Medical Instrumentation Techniques Engineering, Electrical Engineering Technical College, Middle Technical University (MTU), Al Doura, Baghdad 10022, Iraq)

  • Haider Mahmood Jawad

    (Centre of Advanced Electronic & Communication Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
    Department of Computer Communication Engineering, Al-Rafidain University College, Filastin, Baghdad 10064, Iraq)

  • Mahamod Ismail

    (Centre of Advanced Electronic & Communication Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia)

  • Mahmood Jawad Abu-AlShaeer

    (Department of Statistic, Al-Rafidain University College, Filastin, Baghdad 10064, Iraq)

Abstract

Single-tube loop coil (STLC) and multi-turn copper wire coil (MTCWC) wireless power transfer (WPT) methods are proposed in this study to overcome the challenges of battery life during low-power home appliance operations. Transfer power, efficiency, and distance are investigated for charging mobile devices on the basis of the two proposed systems. The transfer distances of 1–15 cm are considered because the practicality of this range has been proven to be reliable in the current work on mobile device battery charging. For STLC, the Li-ion battery is charged with total system efficiencies of 86.45%, 77.08%, and 52.08%, without a load, at distances of 2, 6, and 15 cm, respectively. When the system is loaded with 100 Ω at the corresponding distances, the transfer efficiencies are reduced to 80.66%, 66.66%, and 47.04%. For MTCWC, the battery is charged with total system efficiencies of 88.54%, 75%, and 52.08%, without a load, at the same distances of 2, 6, and 15 cm. When the system is loaded with 100 Ω at the corresponding distances, the transfer efficiencies are drastically reduced to 39.52%, 33.6%, and 15.13%. The contrasting results, between the STLC and MTCWC methods, are produced because of the misalignment between their transmitters and receiver coils. In addition, the diameter of the MTCWC is smaller than that of the STLC. The output power of the proposed system can charge the latest smartphone in the market, with generated output powers of 5 W (STLC) and 2 W (MTCWC). The above WPT methods are compared with other WPT methods in the literature.

Suggested Citation

  • Aqeel Mahmood Jawad & Rosdiadee Nordin & Sadik Kamel Gharghan & Haider Mahmood Jawad & Mahamod Ismail & Mahmood Jawad Abu-AlShaeer, 2018. "Single-Tube and Multi-Turn Coil Near-Field Wireless Power Transfer for Low-Power Home Appliances," Energies, MDPI, vol. 11(8), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1969-:d:160694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/1969/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/1969/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruikun Mai & Linsen Ma & Yeran Liu & Pengfei Yue & Guangzhong Cao & Zhengyou He, 2017. "A Maximum Efficiency Point Tracking Control Scheme Based on Different Cross Coupling of Dual-Receiver Inductive Power Transfer System," Energies, MDPI, vol. 10(2), pages 1-17, February.
    2. Aqeel Mahmood Jawad & Rosdiadee Nordin & Sadik Kamel Gharghan & Haider Mahmood Jawad & Mahamod Ismail, 2017. "Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review," Energies, MDPI, vol. 10(7), pages 1-28, July.
    3. Kamal Eldin Idris Elnail & Xueliang Huang & Chen Xiao & Linlin Tan & Xu Haozhe, 2018. "Core Structure and Electromagnetic Field Evaluation in WPT Systems for Charging Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    4. Tommaso Campi & Silvano Cruciani & Mauro Feliziani, 2018. "Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil," Energies, MDPI, vol. 11(2), pages 1-15, February.
    5. Ali Bin Junaid & Aleksay Konoiko & Yahya Zweiri & M. Necip Sahinkaya & Lakmal Seneviratne, 2017. "Autonomous Wireless Self-Charging for Multi-Rotor Unmanned Aerial Vehicles," Energies, MDPI, vol. 10(6), pages 1-14, June.
    6. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    7. Xin Liu & Tianfeng Wang & Xijun Yang & Nan Jin & Houjun Tang, 2017. "Analysis and Design of a Wireless Power Transfer System with Dual Active Bridges," Energies, MDPI, vol. 10(10), pages 1-20, October.
    8. Yi Wang & Fei Lin & Zhongping Yang & Zhiyuan Liu, 2017. "Analysis of the Influence of Compensation Capacitance Errors of a Wireless Power Transfer System with SS Topology," Energies, MDPI, vol. 10(12), pages 1-14, December.
    9. Vijith Vijayakumaran Nair & Jun Rim Choi, 2016. "An Efficiency Enhancement Technique for a Wireless Power Transmission System Based on a Multiple Coil Switching Technique," Energies, MDPI, vol. 9(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    2. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Campi & Silvano Cruciani & Mauro Feliziani, 2018. "Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil," Energies, MDPI, vol. 11(2), pages 1-15, February.
    2. Andrea Carloni & Federico Baronti & Roberto Di Rienzo & Roberto Roncella & Roberto Saletti, 2021. "On the Sizing of the DC-Link Capacitor to Increase the Power Transfer in a Series-Series Inductive Resonant Wireless Charging Station," Energies, MDPI, vol. 14(3), pages 1-13, January.
    3. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2019. "Innovative Design of Drone Landing Gear Used as a Receiving Coil in Wireless Charging Application," Energies, MDPI, vol. 12(18), pages 1-20, September.
    4. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    5. Andrea Carloni & Federico Baronti & Roberto Di Rienzo & Roberto Roncella & Roberto Saletti, 2020. "Effect of the DC-Link Capacitor Size on the Wireless Inductive-Coupled Opportunity-Charging of a Drone Battery," Energies, MDPI, vol. 13(10), pages 1-13, May.
    6. Abdullah Mohiuddin & Tarek Taha & Yahya Zweiri & Dongming Gan, 2019. "UAV Payload Transportation via RTDP Based Optimized Velocity Profiles," Energies, MDPI, vol. 12(16), pages 1-25, August.
    7. Aleksandra Tiurlikova & Nikita Stepanov & Konstantin Mikhaylov, 2019. "Wireless power transfer from unmanned aerial vehicle to low-power wide area network nodes: Performance and business prospects for LoRaWAN," International Journal of Distributed Sensor Networks, , vol. 15(11), pages 15501477198, November.
    8. Weikun Cai & Dianguang Ma & Houjun Tang & Xiaoyang Lai & Xin Liu & Longzhao Sun, 2018. "Highly Efficient Target Power Control for Two-Receiver Wireless Power Transfer Systems," Energies, MDPI, vol. 11(10), pages 1-17, October.
    9. Xin Liu & Tianfeng Wang & Nan Jin & Salman Habib & Muhammad Ali & Xijun Yang & Houjun Tang, 2018. "Analysis and Elimination of Dead-Time Effect in Wireless Power Transfer System," Energies, MDPI, vol. 11(6), pages 1-15, June.
    10. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2021. "Efficient Wireless Drone Charging Pad for Any Landing Position and Orientation," Energies, MDPI, vol. 14(23), pages 1-14, December.
    11. Weikun Cai & Dianguang Ma & Xiaoyang Lai & Khurram Hashmi & Houjun Tang & Junzhong Xu, 2020. "Time-Sharing Control Strategy for Multiple-Receiver Wireless Power Transfer Systems," Energies, MDPI, vol. 13(3), pages 1-26, January.
    12. José Manuel González-González & Alicia Triviño-Cabrera & José Antonio Aguado, 2018. "Design and Validation of a Control Algorithm for a SAE J2954-Compliant Wireless Charger to Guarantee the Operational Electrical Constraints," Energies, MDPI, vol. 11(3), pages 1-17, March.
    13. Linlin Tan & Kamal Eldin Idris Elnail & Minghao Ju & Xueliang Huang, 2019. "Comparative Analysis and Design of the Shielding Techniques in WPT Systems for Charging EVs," Energies, MDPI, vol. 12(11), pages 1-20, June.
    14. Mohammad Fatin Fatihur Rahman & Shurui Fan & Yan Zhang & Lei Chen, 2021. "A Comparative Study on Application of Unmanned Aerial Vehicle Systems in Agriculture," Agriculture, MDPI, vol. 11(1), pages 1-26, January.
    15. Marojahan Tampubolon & Laskar Pamungkas & Huang-Jen Chiu & Yu-Chen Liu & Yao-Ching Hsieh, 2018. "Dynamic Wireless Power Transfer for Logistic Robots," Energies, MDPI, vol. 11(3), pages 1-13, February.
    16. Aqeel Mahmood Jawad & Rosdiadee Nordin & Haider Mahmood Jawad & Sadik Kamel Gharghan & Asma’ Abu-Samah & Mahmood Jawad Abu-Alshaeer & Nor Fadzilah Abdullah, 2022. "Wireless Drone Charging Station Using Class-E Power Amplifier in Vertical Alignment and Lateral Misalignment Conditions," Energies, MDPI, vol. 15(4), pages 1-29, February.
    17. Ahmed O. MohamedZain & Lee Wei Hou & Huangshen Chua & Kianmeng Yap & Lau Kim Boon, 2023. "The Design and Fabrication of Multiple-Transmitter Coils and Single-Receiver Coils for a Wireless Power Transfer System to Charge a 3s LiPo Drone’s Battery," Energies, MDPI, vol. 16(9), pages 1-23, April.
    18. Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
    19. Zhengwang He & Zhiyong Li & Ruoyue Wang & Ying Fan & Minqian Xu, 2021. "A New Arrangement of Active Coils for Wireless Charging of UAV," Energies, MDPI, vol. 14(18), pages 1-11, September.
    20. Narayanamoorthi R. & Vimala Juliet A. & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Zbigniew M. Leonowicz, 2017. "Class E Power Amplifier Design and Optimization for the Capacitive Coupled Wireless Power Transfer System in Biomedical Implants," Energies, MDPI, vol. 10(9), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1969-:d:160694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.