IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8188-d696111.html
   My bibliography  Save this article

Efficient Wireless Drone Charging Pad for Any Landing Position and Orientation

Author

Listed:
  • Tommaso Campi

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

  • Silvano Cruciani

    (Department of Astronautics, Electrical and Energetics Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Francesca Maradei

    (Department of Astronautics, Electrical and Energetics Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Mauro Feliziani

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

Abstract

A wireless charging pad for drones based on resonant magnetic technology to recharge the internal battery is presented. The goal of the study was to design a robust, reliable and efficient charging station where a drone can land to automatically recharge its battery. The components of the wireless power transfer (WPT) system on board the drone must be compact and light in order not to alter the payload of the drone. In this study, the non-planar receiving coil of the WPT system is integrated into the drone’s landing gear while the transmitting pad is designed to be efficient for any landing point and orientation of the drone in the charging pad area. To meet these requirements, power transmission is accomplished by an array of planar coils integrated into the ground base station. The configuration of the WPT coil system, including a three-dimensional receiving coil and a multicoil transmitter, is deeply analyzed to evaluate the performance of the WPT, considering potential lateral misalignment and rotation of the receiving coil due to imprecise drone landing. According to the proposed configuration, the battery of a light drone (2 kg in weight and 0.5 kg in payload) is recharged in less than an hour, with an efficiency always greater than 75%.

Suggested Citation

  • Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2021. "Efficient Wireless Drone Charging Pad for Any Landing Position and Orientation," Energies, MDPI, vol. 14(23), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8188-:d:696111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2019. "Innovative Design of Drone Landing Gear Used as a Receiving Coil in Wireless Charging Application," Energies, MDPI, vol. 12(18), pages 1-20, September.
    2. Ali Bin Junaid & Aleksay Konoiko & Yahya Zweiri & M. Necip Sahinkaya & Lakmal Seneviratne, 2017. "Autonomous Wireless Self-Charging for Multi-Rotor Unmanned Aerial Vehicles," Energies, MDPI, vol. 10(6), pages 1-14, June.
    3. Tommaso Campi & Silvano Cruciani & Mauro Feliziani, 2018. "Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil," Energies, MDPI, vol. 11(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Heo & Sang-Won Kim & In-Kui Cho & Yong Bae Park, 2022. "Position Estimation of Multiple Receiving Coils and Power Transmission Control for WPT without Feedback," Energies, MDPI, vol. 15(22), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Carloni & Federico Baronti & Roberto Di Rienzo & Roberto Roncella & Roberto Saletti, 2021. "On the Sizing of the DC-Link Capacitor to Increase the Power Transfer in a Series-Series Inductive Resonant Wireless Charging Station," Energies, MDPI, vol. 14(3), pages 1-13, January.
    2. Mohammad Fatin Fatihur Rahman & Shurui Fan & Yan Zhang & Lei Chen, 2021. "A Comparative Study on Application of Unmanned Aerial Vehicle Systems in Agriculture," Agriculture, MDPI, vol. 11(1), pages 1-26, January.
    3. Abdullah Mohiuddin & Tarek Taha & Yahya Zweiri & Dongming Gan, 2019. "UAV Payload Transportation via RTDP Based Optimized Velocity Profiles," Energies, MDPI, vol. 12(16), pages 1-25, August.
    4. Marojahan Tampubolon & Laskar Pamungkas & Huang-Jen Chiu & Yu-Chen Liu & Yao-Ching Hsieh, 2018. "Dynamic Wireless Power Transfer for Logistic Robots," Energies, MDPI, vol. 11(3), pages 1-13, February.
    5. Andrea Carloni & Federico Baronti & Roberto Di Rienzo & Roberto Roncella & Roberto Saletti, 2020. "Effect of the DC-Link Capacitor Size on the Wireless Inductive-Coupled Opportunity-Charging of a Drone Battery," Energies, MDPI, vol. 13(10), pages 1-13, May.
    6. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2019. "Innovative Design of Drone Landing Gear Used as a Receiving Coil in Wireless Charging Application," Energies, MDPI, vol. 12(18), pages 1-20, September.
    7. Aqeel Mahmood Jawad & Rosdiadee Nordin & Haider Mahmood Jawad & Sadik Kamel Gharghan & Asma’ Abu-Samah & Mahmood Jawad Abu-Alshaeer & Nor Fadzilah Abdullah, 2022. "Wireless Drone Charging Station Using Class-E Power Amplifier in Vertical Alignment and Lateral Misalignment Conditions," Energies, MDPI, vol. 15(4), pages 1-29, February.
    8. Aqeel Mahmood Jawad & Rosdiadee Nordin & Sadik Kamel Gharghan & Haider Mahmood Jawad & Mahamod Ismail & Mahmood Jawad Abu-AlShaeer, 2018. "Single-Tube and Multi-Turn Coil Near-Field Wireless Power Transfer for Low-Power Home Appliances," Energies, MDPI, vol. 11(8), pages 1-19, July.
    9. Ahmed O. MohamedZain & Lee Wei Hou & Huangshen Chua & Kianmeng Yap & Lau Kim Boon, 2023. "The Design and Fabrication of Multiple-Transmitter Coils and Single-Receiver Coils for a Wireless Power Transfer System to Charge a 3s LiPo Drone’s Battery," Energies, MDPI, vol. 16(9), pages 1-23, April.
    10. Zhengwang He & Zhiyong Li & Ruoyue Wang & Ying Fan & Minqian Xu, 2021. "A New Arrangement of Active Coils for Wireless Charging of UAV," Energies, MDPI, vol. 14(18), pages 1-11, September.
    11. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    12. Ghada Bouattour & Mohamed Elhawy & Slim Naifar & Christian Viehweger & Houda Ben Jmaa Derbel & Olfa Kanoun, 2020. "Multiplexed Supply of a MISO Wireless Power Transfer System for Battery-Free Wireless Sensors," Energies, MDPI, vol. 13(5), pages 1-23, March.
    13. Mohammad Junaid & Zsolt Szalay & Árpád Török, 2021. "Evaluation of Non-Classical Decision-Making Methods in Self Driving Cars: Pedestrian Detection Testing on Cluster of Images with Different Luminance Conditions," Energies, MDPI, vol. 14(21), pages 1-16, November.
    14. Tommaso Campi & Silvano Cruciani & Mauro Feliziani, 2018. "Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil," Energies, MDPI, vol. 11(2), pages 1-15, February.
    15. Aleksandra Tiurlikova & Nikita Stepanov & Konstantin Mikhaylov, 2019. "Wireless power transfer from unmanned aerial vehicle to low-power wide area network nodes: Performance and business prospects for LoRaWAN," International Journal of Distributed Sensor Networks, , vol. 15(11), pages 15501477198, November.
    16. Faraci, Giuseppe & Raciti, Angelo & Rizzo, Santi Agatino & Schembra, Giovanni, 2020. "Green wireless power transfer system for a drone fleet managed by reinforcement learning in smart industry," Applied Energy, Elsevier, vol. 259(C).
    17. Linlin Tan & Kamal Eldin Idris Elnail & Minghao Ju & Xueliang Huang, 2019. "Comparative Analysis and Design of the Shielding Techniques in WPT Systems for Charging EVs," Energies, MDPI, vol. 12(11), pages 1-20, June.
    18. Jaehyun Kim & Chanwoo Moon, 2019. "A Robot System Maintained with Small Scale Distributed Energy Sources," Energies, MDPI, vol. 12(20), pages 1-16, October.
    19. Fengshuo Yang & Jinhai Jiang & Chuanyu Sun & Aina He & Wanqi Chen & Yu Lan & Kai Song, 2022. "Efficiency Improvement of Magnetic Coupler with Nanocrystalline Alloy Film for UAV Wireless Charging System with a Carbon Fiber Fuselage," Energies, MDPI, vol. 15(22), pages 1-17, November.
    20. Lin Chen & Jianfeng Hong & Zaifa Lin & Daqing Luo & Mingjie Guan & Wenxiang Chen, 2020. "A Converter with Automatic Stage Transition Control for Inductive Power Transfer," Energies, MDPI, vol. 13(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8188-:d:696111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.