IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2177-d123571.html
   My bibliography  Save this article

Analysis of the Influence of Compensation Capacitance Errors of a Wireless Power Transfer System with SS Topology

Author

Listed:
  • Yi Wang

    (School of Electrical Engineering, Beijing Jiaotong University, Shangyuan Village No. 3, Haidian District, Beijing 100044, China)

  • Fei Lin

    (School of Electrical Engineering, Beijing Jiaotong University, Shangyuan Village No. 3, Haidian District, Beijing 100044, China)

  • Zhongping Yang

    (School of Electrical Engineering, Beijing Jiaotong University, Shangyuan Village No. 3, Haidian District, Beijing 100044, China)

  • Zhiyuan Liu

    (School of Electrical Engineering, Beijing Jiaotong University, Shangyuan Village No. 3, Haidian District, Beijing 100044, China)

Abstract

In this study, in order to determine the reasonable accuracy of the compensation capacitances satisfying the requirements on the output characteristics for a wireless power transfer (WPT) system, taking the series-series (SS) compensation structure as an example, the calculation formulas of the output characteristics, such as the power factor, output power, coil transfer efficiency, and capacitors’ voltage stress, are given under the condition of incomplete compensation according to circuit theory. The influence of compensation capacitance errors on the output characteristics of the system is then analyzed. The Taylor expansions of the theoretical formulas are carried out to simplify the formulas. The influence degrees of compensation capacitance errors on the output characteristics are calculated according to the simplified formulas. The reasonable error ranges of the compensation capacitances are then determined according to the requirements of the output characteristics of the system in the system design. Finally, the validity of the theoretical analysis and the simplified processing is verified through experiments. The proposed method has a certain guiding role for practical engineering design, especially in mass production.

Suggested Citation

  • Yi Wang & Fei Lin & Zhongping Yang & Zhiyuan Liu, 2017. "Analysis of the Influence of Compensation Capacitance Errors of a Wireless Power Transfer System with SS Topology," Energies, MDPI, vol. 10(12), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2177-:d:123571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuyu Geng & Bin Li & Zhongping Yang & Fei Lin & Hu Sun, 2017. "A High Efficiency Charging Strategy for a Supercapacitor Using a Wireless Power Transfer System Based on Inductor/Capacitor/Capacitor (LCC) Compensation Topology," Energies, MDPI, vol. 10(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aqeel Mahmood Jawad & Rosdiadee Nordin & Sadik Kamel Gharghan & Haider Mahmood Jawad & Mahamod Ismail & Mahmood Jawad Abu-AlShaeer, 2018. "Single-Tube and Multi-Turn Coil Near-Field Wireless Power Transfer for Low-Power Home Appliances," Energies, MDPI, vol. 11(8), pages 1-19, July.
    2. Tommaso Campi & Silvano Cruciani & Mauro Feliziani, 2018. "Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil," Energies, MDPI, vol. 11(2), pages 1-15, February.
    3. Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
    4. Xin Liu & Tianfeng Wang & Nan Jin & Salman Habib & Muhammad Ali & Xijun Yang & Houjun Tang, 2018. "Analysis and Elimination of Dead-Time Effect in Wireless Power Transfer System," Energies, MDPI, vol. 11(6), pages 1-15, June.
    5. José Manuel González-González & Alicia Triviño-Cabrera & José Antonio Aguado, 2018. "Design and Validation of a Control Algorithm for a SAE J2954-Compliant Wireless Charger to Guarantee the Operational Electrical Constraints," Energies, MDPI, vol. 11(3), pages 1-17, March.
    6. Weikun Cai & Dianguang Ma & Houjun Tang & Xiaoyang Lai & Xin Liu & Longzhao Sun, 2018. "Highly Efficient Target Power Control for Two-Receiver Wireless Power Transfer Systems," Energies, MDPI, vol. 11(10), pages 1-17, October.
    7. Weikun Cai & Dianguang Ma & Xiaoyang Lai & Khurram Hashmi & Houjun Tang & Junzhong Xu, 2020. "Time-Sharing Control Strategy for Multiple-Receiver Wireless Power Transfer Systems," Energies, MDPI, vol. 13(3), pages 1-26, January.
    8. Andrea Carloni & Federico Baronti & Roberto Di Rienzo & Roberto Roncella & Roberto Saletti, 2020. "Effect of the DC-Link Capacitor Size on the Wireless Inductive-Coupled Opportunity-Charging of a Drone Battery," Energies, MDPI, vol. 13(10), pages 1-13, May.
    9. Andrea Carloni & Federico Baronti & Roberto Di Rienzo & Roberto Roncella & Roberto Saletti, 2021. "On the Sizing of the DC-Link Capacitor to Increase the Power Transfer in a Series-Series Inductive Resonant Wireless Charging Station," Energies, MDPI, vol. 14(3), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shichun Yang & Xiaoyu Yan & Hong He & Peng Yang & Zhaoxia Peng & Haigang Cui, 2018. "Control Strategy for Vehicle Inductive Wireless Charging Based on Load Adaptive and Frequency Adjustment," Energies, MDPI, vol. 11(5), pages 1-23, May.
    2. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    3. Jianyang Zhai & Xudong Zhang & Shiqi Zhao & Yuan Zou, 2023. "Modeling and Experiments of a Wireless Power Transfer System Considering Scenarios from In-Wheel-Motor Applications," Energies, MDPI, vol. 16(2), pages 1-20, January.
    4. Li Zhai & Yu Cao & Liwen Lin & Tao Zhang & Steven Kavuma, 2018. "Mitigation Conducted Emission Strategy Based on Transfer Function from a DC-Fed Wireless Charging System for Electric Vehicles," Energies, MDPI, vol. 11(3), pages 1-17, February.
    5. Kalina Detka & Krzysztof Górecki, 2022. "Wireless Power Transfer—A Review," Energies, MDPI, vol. 15(19), pages 1-21, October.
    6. Naghmash Ali & Zhizhen Liu & Hammad Armghan & Iftikhar Ahmad & Yanjin Hou, 2021. "LCC-S-Based Integral Terminal Sliding Mode Controller for a Hybrid Energy Storage System Using a Wireless Power System," Energies, MDPI, vol. 14(6), pages 1-25, March.
    7. Pedro J. Villegas & Juan A. Martín-Ramos & Juan Díaz & Juan Á. Martínez & Miguel J. Prieto & Alberto M. Pernía, 2017. "A Digitally Controlled Power Converter for an Electrostatic Precipitator," Energies, MDPI, vol. 10(12), pages 1-24, December.
    8. Francisco Javier López-Alcolea & Javier Vázquez & Emilio J. Molina-Martínez & Pedro Roncero-Sánchez & Alfonso Parreño Torres, 2020. "Monte-Carlo Analysis of the Influence of the Electrical Component Tolerances on the Behavior of Series-Series- and LCC-Compensated IPT Systems," Energies, MDPI, vol. 13(14), pages 1-28, July.
    9. Naghmash Ali & Zhizhen Liu & Yanjin Hou & Hammad Armghan & Xiaozhao Wei & Ammar Armghan, 2020. "LCC-S Based Discrete Fast Terminal Sliding Mode Controller for Efficient Charging through Wireless Power Transfer," Energies, MDPI, vol. 13(6), pages 1-18, March.
    10. Tianqing Li & Xiangzhou Wang & Shuhua Zheng & Chunhua Liu, 2018. "An Efficient Topology for Wireless Power Transfer over a Wide Range of Loading Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    11. Vincenzo Cirimele & Fabio Freschi & Paolo Guglielmi, 2018. "Scaling Rules at Constant Frequency for Resonant Inductive Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    12. Yuyu Geng & Tao Wang & Shiyun Xie & Yi Yang, 2022. "Analysis and Design of Wireless Power Transfer Systems Applied to Electrical Vehicle Supercapacitor Charge Using Variable-Resistance-Based Method," Energies, MDPI, vol. 15(16), pages 1-15, August.
    13. Qichang Duan & Yanling Li & Xin Dai & Tao Zou, 2017. "A Novel High Controllable Voltage Gain Push-Pull Topology for Wireless Power Transfer System," Energies, MDPI, vol. 10(4), pages 1-13, April.
    14. Vladimir Kindl & Martin Zavrel & Pavel Drabek & Tomas Kavalir, 2018. "High Efficiency and Power Tracking Method for Wireless Charging System Based on Phase-Shift Control," Energies, MDPI, vol. 11(8), pages 1-19, August.
    15. Li Ji & Lifang Wang & Chenglin Liao & Shufan Li, 2017. "Crosstalk Study of Simultaneous Wireless Power/Information Transmission Based on an LCC Compensation Network," Energies, MDPI, vol. 10(10), pages 1-20, October.
    16. Xiaofei Li & Chunsen Tang & Xin Dai & Aiguo Patrick Hu & Sing Kiong Nguang, 2017. "Bifurcation Phenomena Studies of a Voltage Controlled Buck-Inverter Cascade System," Energies, MDPI, vol. 10(5), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2177-:d:123571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.