Direct Flux Control for Stand-Alone Operation Brushless Doubly Fed Induction Generators Using a Resonant-Based Sliding-Mode Control Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chaoying Xia & Xiaoxin Hou, 2016. "Study on the Static Load Capacity and Synthetic Vector Direct Torque Control of Brushless Doubly Fed Machines," Energies, MDPI, vol. 9(11), pages 1-22, November.
- Oscar Barambones & Jose A. Cortajarena & Patxi Alkorta & Jose M. Gonzalez De Durana, 2014. "A Real-Time Sliding Mode Control for a Wind Energy System Based on a Doubly Fed Induction Generator," Energies, MDPI, vol. 7(10), pages 1-22, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mei Su & Weiyu Jin & Guanguan Zhang & Weiyi Tang & Frede Blaabjerg, 2018. "Internal Model Current Control of Brushless Doubly Fed Induction Machines," Energies, MDPI, vol. 11(7), pages 1-19, July.
- Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhenming Li & Xuefan Wang & Lezhi Ou & Xinmai Gao & Fei Xiong, 2019. "Research of the Fundamental Wave of Wound-Rotor Brushless Doubly-Fed Machine," Energies, MDPI, vol. 12(6), pages 1-14, March.
- Jianning Shi & Chaoying Xia, 2021. "Feedback Linearization and Maximum Torque per Ampere Control Methods of Cup Rotor Permanent-Magnet Doubly Fed Machine," Energies, MDPI, vol. 14(19), pages 1-21, October.
- Dinh-Chung Phan & Shigeru Yamamoto, 2015. "Maximum Energy Output of a DFIG Wind Turbine Using an Improved MPPT-Curve Method," Energies, MDPI, vol. 8(10), pages 1-19, October.
- Zhiwei Ruan & Chaohao Kan & Chenglong Chu & Taian Ren & Qiuming Chen, 2019. "Improvements of the Starting Performance of A Novel Brushless Doubly-fed Motor Based on the Composite Coils," Energies, MDPI, vol. 12(6), pages 1-20, March.
- Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
- Chaoying Xia & Jiaxiang Bi & Jianning Shi, 2023. "Investigation of a Cup-Rotor Permanent-Magnet Doubly Fed Machine for Extended-Range Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-23, March.
- Markel Penalba & José-Antonio Cortajarena & John V. Ringwood, 2017. "Validating a Wave-to-Wire Model for a Wave Energy Converter—Part II: The Electrical System," Energies, MDPI, vol. 10(7), pages 1-24, July.
- Aman Abdulla Tanvir & Adel Merabet & Rachid Beguenane, 2015. "Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG)-Based Wind Energy Conversion System," Energies, MDPI, vol. 8(9), pages 1-20, September.
- Mohammed Mazen Alhato & Mohamed N. Ibrahim & Hegazy Rezk & Soufiene Bouallègue, 2021. "An Enhanced DC-Link Voltage Response for Wind-Driven Doubly Fed Induction Generator Using Adaptive Fuzzy Extended State Observer and Sliding Mode Control," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
- Irfan Sami & Shafaat Ullah & Zahoor Ali & Nasim Ullah & Jong-Suk Ro, 2020. "A Super Twisting Fractional Order Terminal Sliding Mode Control for DFIG-Based Wind Energy Conversion System," Energies, MDPI, vol. 13(9), pages 1-20, May.
- Younes Azelhak & Loubna Benaaouinate & Hicham Medromi & Youssef Errami & Tarik Bouragba & Damien Voyer, 2021. "Exhaustive Comparison between Linear and Nonlinear Approaches for Grid-Side Control of Wind Energy Conversion Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
- Chaoying Xia & Xiaoxin Hou & Feng Chen, 2018. "Flux-Angle-Difference Feedback Control for the Brushless Doubly Fed Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.
- Mei Su & Weiyu Jin & Guanguan Zhang & Weiyi Tang & Frede Blaabjerg, 2018. "Internal Model Current Control of Brushless Doubly Fed Induction Machines," Energies, MDPI, vol. 11(7), pages 1-19, July.
- Mohammed Mazen Alhato & Soufiene Bouallègue & Hegazy Rezk, 2020. "Modeling and Performance Improvement of Direct Power Control of Doubly-Fed Induction Generator Based Wind Turbine through Second-Order Sliding Mode Control Approach," Mathematics, MDPI, vol. 8(11), pages 1-31, November.
More about this item
Keywords
brushless doubly fed induction generator; direct control; stand-alone; sliding-mode; resonant; reduced-order generalized integrator; variable-speed constant-frequency; wind energy conversion systems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:814-:d:139144. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.