IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1806-d157259.html
   My bibliography  Save this article

Investigation and Analysis of Attack Angle and Rear Flow Condition of Contra-Rotating Small Hydro-Turbine

Author

Listed:
  • Ding Nan

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    Graduate School of Advanced Technology and Science, Tokushima University, Tokushima 770-8506, Japan)

  • Toru Shigemitsu

    (Institute of Science and Technology, Tokushima University, Tokushima 770-8506, Japan)

  • Shengdun Zhao

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

At present, there is strong impetus for renewable energy to replace the traditional energy sources because of the environmental pollution. Small hydropower is a promising renewable energy source; however, small hydro-turbines easily become blocked and impacted, and the efficiency of such devices is lower. Therefore, we examined contra-rotating rotors to overcome these disadvantages. We have made modifications to the blade thickness and to the front hub of the original model. In this paper, we focus on the attack angle and rear flow condition of the original model and the modified one. The axial and circumferential velocities are given as outputs, from which the attack angle is then calculated. The results show that the attack angle of new model is smaller at the hub area. The stagnation point of the rear rotor was moved slightly to the pressure surface of the rear blade, and the separation at leading edge area was suppressed. The crowed flow at the tip clearance area is also reduced. The high turbulent kinetic energy area is moved forward to the middle of the blade. The rear rotor’s torque is bigger and changes more smoothly. Therefore, the rear flow conditions of the new model are improved.

Suggested Citation

  • Ding Nan & Toru Shigemitsu & Shengdun Zhao, 2018. "Investigation and Analysis of Attack Angle and Rear Flow Condition of Contra-Rotating Small Hydro-Turbine," Energies, MDPI, vol. 11(7), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1806-:d:157259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1806/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabl, Roman & Innerhofer, Daniel & Achleitner, Stefan & Righetti, Maurizio & Aufleger, Markus, 2018. "Evaluation criteria for velocity distributions in front of bulb hydro turbines," Renewable Energy, Elsevier, vol. 121(C), pages 745-756.
    2. Ikeda, Toshihiko & Iio, Shouichiro & Tatsuno, Kenji, 2010. "Performance of nano-hydraulic turbine utilizing waterfalls," Renewable Energy, Elsevier, vol. 35(1), pages 293-300.
    3. Angus C. W. Creech & Alistair G. L. Borthwick & David Ingram, 2017. "Effects of Support Structures in an LES Actuator Line Model of a Tidal Turbine with Contra-Rotating Rotors," Energies, MDPI, vol. 10(5), pages 1-25, May.
    4. Christopher A. Scott & Zachary P. Sugg, 2015. "Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral Constraints, and Policy Imperatives," Energies, MDPI, vol. 8(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoling Wang & Hongling Yu & Peng Lv & Cheng Wang & Jun Zhang & Jia Yu, 2019. "Seepage Safety Assessment of Concrete Gravity Dam Based on Matter-Element Extension Model and FDA," Energies, MDPI, vol. 12(3), pages 1-21, February.
    2. Daniel Biner & Vlad Hasmatuchi & Laurent Rapillard & Samuel Chevailler & François Avellan & Cécile Münch-Alligné, 2021. "DuoTurbo: Implementation of a Counter-Rotating Hydroturbine for Energy Recovery in Drinking Water Networks," Sustainability, MDPI, vol. 13(19), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yidan & Shek, Jonathan K.H. & Mueller, Markus A., 2023. "Controller design for a tidal turbine array, considering both power and loads aspects," Renewable Energy, Elsevier, vol. 216(C).
    2. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    3. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    4. Zia Ur Rehman & Saeed Badshah & Amer Farhan Rafique & Mujahid Badshah & Sakhi Jan & Muhammad Amjad, 2021. "Effect of a Support Tower on the Performance and Wake of a Tidal Current Turbine," Energies, MDPI, vol. 14(4), pages 1-13, February.
    5. Xiaoling Wang & Hongling Yu & Peng Lv & Cheng Wang & Jun Zhang & Jia Yu, 2019. "Seepage Safety Assessment of Concrete Gravity Dam Based on Matter-Element Extension Model and FDA," Energies, MDPI, vol. 12(3), pages 1-21, February.
    6. Mitavachan Hiremath & Peter Viebahn & Sascha Samadi, 2021. "An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios," Energies, MDPI, vol. 14(2), pages 1-28, January.
    7. Ruiwen Zhao & Angus C. W. Creech & Alistair G. L. Borthwick & Vengatesan Venugopal & Takafumi Nishino, 2020. "Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model," Energies, MDPI, vol. 13(4), pages 1-26, February.
    8. Uchiyama, Tomomi & Honda, Satoshi & Degawa, Tomohiro, 2018. "Development of a propeller-type hollow micro-hydraulic turbine with excellent performance in passing foreign matter," Renewable Energy, Elsevier, vol. 126(C), pages 545-551.
    9. Chengpeng Zhang & Ranjith Pathegama Gamage & Mandadige Samintha Anna Perera & Jian Zhao, 2017. "Characteristics of Clay-Abundant Shale Formations: Use of CO 2 for Production Enhancement," Energies, MDPI, vol. 10(11), pages 1-27, November.
    10. Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
    11. Satou, Eiichi & Ikeda, Toshihiko & Uchiyama, Tomomi & Okayama, Tomoko & Miyazawa, Tomoaki & Takamure, Kotaro & Tsunashima, Daisuke, 2022. "Development of an undershot cross-flow hydraulic turbine resistant to snow and ice masses flowing in an installation canal," Renewable Energy, Elsevier, vol. 200(C), pages 146-153.
    12. Pujol, T. & Montoro, L., 2010. "High hydraulic performance in horizontal waterwheels," Renewable Energy, Elsevier, vol. 35(11), pages 2543-2551.
    13. El Fajri, Oumnia & Bowman, Joshua & Bhushan, Shanti & Thompson, David & O'Doherty, Tim, 2022. "Numerical study of the effect of tip-speed ratio on hydrokinetic turbine wake recovery," Renewable Energy, Elsevier, vol. 182(C), pages 725-750.
    14. Natalia Iwaszczuk & Jacek Wolak & Aleksander Iwaszczuk, 2021. "Turkmenistan’s Gas Sector Development Scenarios Based on Econometric and SWOT Analysis," Energies, MDPI, vol. 14(10), pages 1-18, May.
    15. Wei He & Pengkun Yu & Zhongting Hu & Song Lv & Minghui Qin & Cairui Yu, 2019. "Experimental Study and Performance Analysis of a Portable Atmospheric Water Generator," Energies, MDPI, vol. 13(1), pages 1-14, December.
    16. József Popp & Judit Oláh & Mária Farkas Fekete & Zoltán Lakner & Domicián Máté, 2018. "The Relationship Between Prices of Various Metals, Oil and Scarcity," Energies, MDPI, vol. 11(9), pages 1-19, September.
    17. Uchiyama, Tomomi & Gu, Qiang & Degawa, Tomohiro & Iio, Shouichiro & Ikeda, Toshihiko & Takamure, Kotaro, 2020. "Numerical simulations of the flow and performance of a hydraulic Savonius turbine by the vortex in cell method with volume penalization," Renewable Energy, Elsevier, vol. 157(C), pages 482-490.
    18. Tingzhen Ming & Qiankun Wang & Keyuan Peng & Zhe Cai & Wei Yang & Yongjia Wu & Tingrui Gong, 2015. "The Influence of Non-Uniform High Heat Flux on Thermal Stress of Thermoelectric Power Generator," Energies, MDPI, vol. 8(11), pages 1-19, November.
    19. Ji Hao Zhang & Fue-Sang Lien & Eugene Yee, 2022. "Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model," Energies, MDPI, vol. 15(17), pages 1-22, August.
    20. Pujol, T. & Vashisht, A.K. & Ricart, J. & Culubret, D. & Velayos, J., 2015. "Hydraulic efficiency of horizontal waterwheels: Laboratory data and CFD study for upgrading a western Himalayan watermill," Renewable Energy, Elsevier, vol. 83(C), pages 576-586.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1806-:d:157259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.