IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v126y2018icp545-551.html
   My bibliography  Save this article

Development of a propeller-type hollow micro-hydraulic turbine with excellent performance in passing foreign matter

Author

Listed:
  • Uchiyama, Tomomi
  • Honda, Satoshi
  • Degawa, Tomohiro

Abstract

This study develops a micro-hydraulic turbine with excellent performance in the passage of foreign matter included in the water flow. The runner has four blades, with a circular hollow around the rotating axis to pass foreign matter through the runner. The ratio of the hollow diameter D2 to the runner outer diameter D1, D2/D1, is defined as the hollow ratio ε. Laboratory experiments are conducted by introducing polyester fibers into the water flow as foreign matter. The turbine efficiency η decreases with increasing ε under the fiber-free condition. For the runner having no hollow (ε = 0), η decreases drastically with increasing the mass of the introduced fibers. This is due to the blockage of the runner by the fibers. But η for the runners provided with the hollow decreases less. This demonstrates that the hollow makes the fibers pass successfully through the runner. Additional experiments are conducted using the runner with ε = 0.25. The blade leading edges near the central axis are rounded with radius R. When R/D1 = 0.1875, the decrease in η due to the fibers is extremely small. The rounded leading edges successfully prevent the runner from catching the fibers, demonstrating that they effectively heighten the passage performance of foreign matter through the runner.

Suggested Citation

  • Uchiyama, Tomomi & Honda, Satoshi & Degawa, Tomohiro, 2018. "Development of a propeller-type hollow micro-hydraulic turbine with excellent performance in passing foreign matter," Renewable Energy, Elsevier, vol. 126(C), pages 545-551.
  • Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:545-551
    DOI: 10.1016/j.renene.2018.03.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118304002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stark, B.H. & Andò, E. & Hartley, G., 2011. "Modelling and performance of a small siphonic hydropower system," Renewable Energy, Elsevier, vol. 36(9), pages 2451-2464.
    2. Singh, Punit & Nestmann, Franz, 2011. "Experimental investigation of the influence of blade height and blade number on the performance of low head axial flow turbines," Renewable Energy, Elsevier, vol. 36(1), pages 272-281.
    3. Alexander, K.V. & Giddens, E.P. & Fuller, A.M., 2009. "Axial-flow turbines for low head microhydro systems," Renewable Energy, Elsevier, vol. 34(1), pages 35-47.
    4. Golecha, Kailash & Eldho, T.I. & Prabhu, S.V., 2011. "Influence of the deflector plate on the performance of modified Savonius water turbine," Applied Energy, Elsevier, vol. 88(9), pages 3207-3217.
    5. Okot, David Kilama, 2013. "Review of small hydropower technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 515-520.
    6. Ikeda, Toshihiko & Iio, Shouichiro & Tatsuno, Kenji, 2010. "Performance of nano-hydraulic turbine utilizing waterfalls," Renewable Energy, Elsevier, vol. 35(1), pages 293-300.
    7. Yang, Sun-Sheng & Derakhshan, Shahram & Kong, Fan-Yu, 2012. "Theoretical, numerical and experimental prediction of pump as turbine performance," Renewable Energy, Elsevier, vol. 48(C), pages 507-513.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satou, Eiichi & Ikeda, Toshihiko & Uchiyama, Tomomi & Okayama, Tomoko & Miyazawa, Tomoaki & Takamure, Kotaro & Tsunashima, Daisuke, 2022. "Development of an undershot cross-flow hydraulic turbine resistant to snow and ice masses flowing in an installation canal," Renewable Energy, Elsevier, vol. 200(C), pages 146-153.
    2. Uchiyama, Tomomi & Gu, Qiang & Degawa, Tomohiro & Iio, Shouichiro & Ikeda, Toshihiko & Takamure, Kotaro, 2020. "Numerical simulations of the flow and performance of a hydraulic Savonius turbine by the vortex in cell method with volume penalization," Renewable Energy, Elsevier, vol. 157(C), pages 482-490.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uchiyama, Tomomi & Gu, Qiang & Degawa, Tomohiro & Iio, Shouichiro & Ikeda, Toshihiko & Takamure, Kotaro, 2020. "Numerical simulations of the flow and performance of a hydraulic Savonius turbine by the vortex in cell method with volume penalization," Renewable Energy, Elsevier, vol. 157(C), pages 482-490.
    2. Satou, Eiichi & Ikeda, Toshihiko & Uchiyama, Tomomi & Okayama, Tomoko & Miyazawa, Tomoaki & Takamure, Kotaro & Tsunashima, Daisuke, 2022. "Development of an undershot cross-flow hydraulic turbine resistant to snow and ice masses flowing in an installation canal," Renewable Energy, Elsevier, vol. 200(C), pages 146-153.
    3. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    4. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    5. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    6. Bizhanpour, Ali & Hasanzadeh, Nima & Najafi, Amir F. & Magagnato, Franco, 2023. "Investigation of different deflector geometry and mechanism effect on the performance of an in-pipe hydro Savonius turbine," Applied Energy, Elsevier, vol. 350(C).
    7. Hoghooghi, Hadi & Durali, Mohammad & Kashef, Amin, 2018. "A new low-cost swirler for axial micro hydro turbines of low head potential," Renewable Energy, Elsevier, vol. 128(PA), pages 375-390.
    8. Payambarpour, S. Abdolkarim & Najafi, Amir F. & Magagnato, Franco, 2020. "Investigation of deflector geometry and turbine aspect ratio effect on 3D modified in-pipe hydro Savonius turbine: Parametric study," Renewable Energy, Elsevier, vol. 148(C), pages 44-59.
    9. Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
    10. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    11. Thomas Pirard & Vasileios Kitsikoudis & Sebastien Erpicum & Michel Pirotton & Pierre Archambeau & Benjamin Dewals, 2022. "Discharge Redistribution as a Key Process for Heuristic Optimization of Energy Production with Pumps as Turbines in a Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1237-1250, March.
    12. Elgammi, Moutaz & Hamad, Abduljawad Ashour, 2022. "A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon," Renewable Energy, Elsevier, vol. 195(C), pages 1-16.
    13. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    15. Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
    16. Kandi, Ali & Meirelles, Gustavo & Brentan, Bruno, 2022. "Employing demand prediction in pump as turbine plant design regarding energy recovery enhancement," Renewable Energy, Elsevier, vol. 187(C), pages 223-236.
    17. Daqing Zhou & Huixiang Chen & Jie Zhang & Shengwen Jiang & Jia Gui & Chunxia Yang & An Yu, 2019. "Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection," Energies, MDPI, vol. 12(4), pages 1-15, February.
    18. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    19. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    20. Renzi, Massimiliano & Nigro, Alessandra & Rossi, Mosè, 2020. "A methodology to forecast the main non-dimensional performance parameters of pumps-as-turbines (PaTs) operating at Best Efficiency Point (BEP)," Renewable Energy, Elsevier, vol. 160(C), pages 16-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:545-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.