IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i1p293-300.html
   My bibliography  Save this article

Performance of nano-hydraulic turbine utilizing waterfalls

Author

Listed:
  • Ikeda, Toshihiko
  • Iio, Shouichiro
  • Tatsuno, Kenji

Abstract

The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine utilizing waterfalls. A model of an impulse type hydraulic turbine constructed and tested with an indoor type waterfall to arrive at an optimum installation condition. Effects of an installation parameter, namely distance between the rotor and the waterfall on the power performance were studied. The flow field around the rotor was examined visually to clarify influences of installation conditions on the flow field. The flow visualization showed differences of flow pattern around the rotor by the change of flow rate and rotational speed of the rotor. From this study it was found that the power performances of the rotor were changed with the distance between the rotor and the waterfalls. The maximum power coefficient of this turbine is approximately 60%. Also, to respond to changes in the waterfall flow rate, we placed a flat plate on the upper side of the rotor to control the water flow direction. As a result, we found that the coefficient of this turbine is increased with the flow rate and power could be obtained even when the flow rate changed by 3.5 times if the plate was placed on the upper side of the rotor. Although the power coefficient decreased when the plate was installed, the power coefficient still is from 53 to 58%.

Suggested Citation

  • Ikeda, Toshihiko & Iio, Shouichiro & Tatsuno, Kenji, 2010. "Performance of nano-hydraulic turbine utilizing waterfalls," Renewable Energy, Elsevier, vol. 35(1), pages 293-300.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:1:p:293-300
    DOI: 10.1016/j.renene.2009.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109002973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uchiyama, Tomomi & Honda, Satoshi & Degawa, Tomohiro, 2018. "Development of a propeller-type hollow micro-hydraulic turbine with excellent performance in passing foreign matter," Renewable Energy, Elsevier, vol. 126(C), pages 545-551.
    2. Ding Nan & Toru Shigemitsu & Shengdun Zhao, 2018. "Investigation and Analysis of Attack Angle and Rear Flow Condition of Contra-Rotating Small Hydro-Turbine," Energies, MDPI, vol. 11(7), pages 1-18, July.
    3. Pujol, T. & Vashisht, A.K. & Ricart, J. & Culubret, D. & Velayos, J., 2015. "Hydraulic efficiency of horizontal waterwheels: Laboratory data and CFD study for upgrading a western Himalayan watermill," Renewable Energy, Elsevier, vol. 83(C), pages 576-586.
    4. Satou, Eiichi & Ikeda, Toshihiko & Uchiyama, Tomomi & Okayama, Tomoko & Miyazawa, Tomoaki & Takamure, Kotaro & Tsunashima, Daisuke, 2022. "Development of an undershot cross-flow hydraulic turbine resistant to snow and ice masses flowing in an installation canal," Renewable Energy, Elsevier, vol. 200(C), pages 146-153.
    5. Uchiyama, Tomomi & Gu, Qiang & Degawa, Tomohiro & Iio, Shouichiro & Ikeda, Toshihiko & Takamure, Kotaro, 2020. "Numerical simulations of the flow and performance of a hydraulic Savonius turbine by the vortex in cell method with volume penalization," Renewable Energy, Elsevier, vol. 157(C), pages 482-490.
    6. Pujol, T. & Montoro, L., 2010. "High hydraulic performance in horizontal waterwheels," Renewable Energy, Elsevier, vol. 35(11), pages 2543-2551.
    7. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:1:p:293-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.