IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4446-d289821.html
   My bibliography  Save this article

Linking Environmental Policy Integration and the Water-Energy-Land-(Food-)Nexus: A Review of the European Union’s Energy, Water, and Agricultural Policies

Author

Listed:
  • Sandra Venghaus

    (Institute of Energy and Climate Research: Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany)

  • Carolin Märker

    (Institute of Energy and Climate Research: Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany)

  • Sophia Dieken

    (Institute of Energy and Climate Research: Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany)

  • Florian Siekmann

    (Institute of Energy and Climate Research: Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany)

Abstract

Against the backdrop of climate and environmental pressures, as well as limited resource availability and trade conflicts, devising policies for energy and the use of natural resources in general becomes exceedingly complex. Moreover, policies are required to account for interrelations between individual resources and between different sectors and policy fields, but implementation often lacks. To evaluate the current state of integrated policy design in the EU, a review of European energy, water, and agricultural policies was conducted. Using a qualitative comparative research approach, the objective was to identify and explain the differing degrees and variations in policy integration among them. To this aim, the concepts “Environmental Policy Integration” and “Water-Energy-Land Nexus” were jointly applied as analytical frameworks. The analysis revealed that currently, different authorities are endowed with largely sectoral mandates. Accordingly, the respective sectoral policy sets are historically grown based on differing sets of formal and informal rules and processes, thus making policy integration among the sectors, let alone within the nexus, a highly challenging task.

Suggested Citation

  • Sandra Venghaus & Carolin Märker & Sophia Dieken & Florian Siekmann, 2019. "Linking Environmental Policy Integration and the Water-Energy-Land-(Food-)Nexus: A Review of the European Union’s Energy, Water, and Agricultural Policies," Energies, MDPI, vol. 12(23), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4446-:d:289821
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karabulut, Armağan & Egoh, Benis N. & Lanzanova, Denis & Grizzetti, Bruna & Bidoglio, Giovanni & Pagliero, Liliana & Bouraoui, Fayçal & Aloe, Alberto & Reynaud, Arnaud & Maes, Joachim & Vandecasteele,, 2016. "Mapping water provisioning services to support the ecosystem–water–food–energy nexus in the Danube river basin," Ecosystem Services, Elsevier, vol. 17(C), pages 278-292.
    2. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    3. Ozturk, Ilhan, 2015. "Sustainability in the food-energy-water nexus: Evidence from BRICS (Brazil, the Russian Federation, India, China, and South Africa) countries," Energy, Elsevier, vol. 93(P1), pages 999-1010.
    4. Dubreuil, Aurelie & Assoumou, Edi & Bouckaert, Stephanie & Selosse, Sandrine & Maı¨zi, Nadia, 2013. "Water modeling in an energy optimization framework – The water-scarce middle east context," Applied Energy, Elsevier, vol. 101(C), pages 268-279.
    5. Criqui, Patrick & Mima, Silvana, 2012. "European climate—energy security nexus: A model based scenario analysis," Energy Policy, Elsevier, vol. 41(C), pages 827-842.
    6. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2015. "Exploring the water-energy nexus in Brazil: The electricity use for water supply," Energy, Elsevier, vol. 85(C), pages 415-432.
    7. Yolanda Lechón & Cristina De La Rúa & Helena Cabal, 2018. "Impacts of Decarbonisation on the Water-Energy-Land (WEL) Nexus: A Case Study of the Spanish Electricity Sector," Energies, MDPI, vol. 11(5), pages 1-24, May.
    8. Sovacool, Benjamin K. & Saunders, Harry, 2014. "Competing policy packages and the complexity of energy security," Energy, Elsevier, vol. 67(C), pages 641-651.
    9. Logan, Lauren H. & Stillwell, Ashlynn S., 2018. "Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus," Applied Energy, Elsevier, vol. 210(C), pages 434-450.
    10. Rio Carrillo, Anna Mercè & Frei, Christoph, 2009. "Water: A key resource in energy production," Energy Policy, Elsevier, vol. 37(11), pages 4303-4312, November.
    11. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    12. Śmiech, Sławomir & Papież, Monika, 2014. "Energy consumption and economic growth in the light of meeting the targets of energy policy in the EU: The bootstrap panel Granger causality approach," Energy Policy, Elsevier, vol. 71(C), pages 118-129.
    13. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    14. Mark Howells & H-Holger Rogner, 2014. "Assessing integrated systems," Nature Climate Change, Nature, vol. 4(4), pages 246-247, April.
    15. Di Gregorio, Monica & Nurrochmat, Dodik Ridho & Paavola, Jouni & Sari, Intan Maya & Fatorelli, Leandra & Pramova, Emilia & Locatelli, Bruno & Brockhaus, Maria & Kusumadewi, Sonya Dyah, 2017. "Climate policy integration in the land use sector: Mitigation, adaptation and sustainable development linkages," Environmental Science & Policy, Elsevier, vol. 67(C), pages 35-43.
    16. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
    17. Yuan Chang & Guijun Li & Yuan Yao & Lixiao Zhang & Chang Yu, 2016. "Quantifying the Water-Energy-Food Nexus: Current Status and Trends," Energies, MDPI, vol. 9(2), pages 1-17, January.
    18. Gianfreda, Angelica & Parisio, Lucia & Pelagatti, Matteo, 2016. "Revisiting long-run relations in power markets with high RES penetration," Energy Policy, Elsevier, vol. 94(C), pages 432-445.
    19. Abegaz, Brook W. & Datta, Tania & Mahajan, Satish M., 2018. "Sensor technologies for the energy-water nexus – A review," Applied Energy, Elsevier, vol. 210(C), pages 451-466.
    20. Ackerman, Frank & Fisher, Jeremy, 2013. "Is there a water–energy nexus in electricity generation? Long-term scenarios for the western United States," Energy Policy, Elsevier, vol. 59(C), pages 235-241.
    21. Ziv, Guy & Watson, Elizabeth & Young, Dylan & Howard, David C. & Larcom, Shaun T. & Tanentzap, Andrew J., 2018. "The potential impact of Brexit on the energy, water and food nexus in the UK: A fuzzy cognitive mapping approach," Applied Energy, Elsevier, vol. 210(C), pages 487-498.
    22. Patrick Criqui & Silvana Mima, 2012. "European climate -- energy security nexus: A model based scenario analysis," Post-Print halshs-00661043, HAL.
    23. Venkatesh, G. & Chan, Arthur & Brattebø, Helge, 2014. "Understanding the water-energy-carbon nexus in urban water utilities: Comparison of four city case studies and the relevant influencing factors," Energy, Elsevier, vol. 75(C), pages 153-166.
    24. Pirlogea, Corina & Cicea, Claudiu, 2012. "Econometric perspective of the energy consumption and economic growth relation in European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5718-5726.
    25. Christopher A. Scott & Zachary P. Sugg, 2015. "Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral Constraints, and Policy Imperatives," Energies, MDPI, vol. 8(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fortino Acosta, 2022. "Linking Nevada to Doughnut Economics," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    2. Michał Kaczmarczyk & Anna Sowiżdżał & Barbara Tomaszewska, 2020. "Energetic and Environmental Aspects of Individual Heat Generation for Sustainable Development at a Local Scale—A Case Study from Poland," Energies, MDPI, vol. 13(2), pages 1-16, January.
    3. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Beland Lindahl, Karin & Söderberg, Charlotta & Lukina, Natalia & Tebenkova, Daria & Pecurul, Mireia & Pülzl, Helga & Sotirov, Metodi & Widmark, Camilla, 2023. "Clash or concert in European forests? Integration and coherence of forest ecosystem service–related national policies," Land Use Policy, Elsevier, vol. 129(C).
    5. Mitavachan Hiremath & Peter Viebahn & Sascha Samadi, 2021. "An Integrated Comparative Assessment of Coal-Based Carbon Capture and Storage (CCS) Vis-à-Vis Renewable Energies in India’s Low Carbon Electricity Transition Scenarios," Energies, MDPI, vol. 14(2), pages 1-28, January.
    6. Schlör, Holger & Märker, Carolin & Venghaus, Sandra, 2021. "Developing a nexus systems thinking test –A qualitative multi- and mixed methods analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    2. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    3. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    4. Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.
    5. Gu, Yifan & Wang, Hongtao & Xu, Jin & Wang, Ying & Wang, Xin & Robinson, Zoe P. & Li, Fengting & Wu, Jiang & Tan, Jianguo & Zhi, Xing, 2019. "Quantification of interlinked environmental footprints on a sustainable university campus: A nexus analysis perspective," Applied Energy, Elsevier, vol. 246(C), pages 65-76.
    6. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    7. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    8. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    9. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    10. Joel O. Botai & Christina M. Botai & Katlego P. Ncongwane & Sylvester Mpandeli & Luxon Nhamo & Muthoni Masinde & Abiodun M. Adeola & Michael G. Mengistu & Henerica Tazvinga & Miriam D. Murambadoro & S, 2021. "A Review of the Water–Energy–Food Nexus Research in Africa," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    11. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    12. Zhang, Tong & Tan, Qian & Yu, Xiaoning & Zhang, Shan, 2020. "Synergy assessment and optimization for water-energy-food nexus: Modeling and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Chen, Yi-Chieh & Dy, Kenneth Bicol & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2024. "Property rights arrangement and stakeholder networks hindering floating photovoltaics: A case of private open-access ponds in Taiwan," Energy Policy, Elsevier, vol. 184(C).
    14. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2015. "Exploring the water-energy nexus in Brazil: The electricity use for water supply," Energy, Elsevier, vol. 85(C), pages 415-432.
    15. Fang, Delin & Chen, Bin, 2017. "Linkage analysis for the water–energy nexus of city," Applied Energy, Elsevier, vol. 189(C), pages 770-779.
    16. Logan, Lauren H. & Stillwell, Ashlynn S., 2018. "Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus," Applied Energy, Elsevier, vol. 210(C), pages 434-450.
    17. Wang, Saige & Fath, Brian & Chen, Bin, 2019. "Energy–water nexus under energy mix scenarios using input–output and ecological network analyses," Applied Energy, Elsevier, vol. 233, pages 827-839.
    18. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Gu, Alun & Teng, Fei & Lv, Zhiqiang, 2016. "Exploring the nexus between water saving and energy conservation: Insights from industry sector during the 12th Five-Year Plan period in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 28-38.
    20. Price, James & Zeyringer, Marianne & Konadu, Dennis & Sobral Mourão, Zenaida & Moore, Andy & Sharp, Ed, 2018. "Low carbon electricity systems for Great Britain in 2050: An energy-land-water perspective," Applied Energy, Elsevier, vol. 228(C), pages 928-941.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4446-:d:289821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.