IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p73-d300793.html
   My bibliography  Save this article

Experimental Study and Performance Analysis of a Portable Atmospheric Water Generator

Author

Listed:
  • Wei He

    (Department of Building Environment and Equipment, Hefei University of Technology, Hefei 230009, China)

  • Pengkun Yu

    (Department of Building Environment and Equipment, Hefei University of Technology, Hefei 230009, China)

  • Zhongting Hu

    (Department of Building Environment and Equipment, Hefei University of Technology, Hefei 230009, China)

  • Song Lv

    (Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China)

  • Minghui Qin

    (Qinghai College of Architectural Technology, Xining 810002, China)

  • Cairui Yu

    (Department of Building Environment and Equipment, Hefei University of Technology, Hefei 230009, China)

Abstract

Found in some specific scenarios, drinking water is hard for people to get, such as during expeditions and scientific investigations. First, a novel water generator with only two thermoelectric coolers (Model A) is designed for extracting water from atmospheric vapor and then experimentally studied under a small inlet air flow rate. The impact of operating conditions on surface temperatures of cold/hot sides and water yield are investigated, including the air flow rate and humidity. Alternately, to determine the super performance of Model A, a comparative experiment between Model A and a reference model (Model B) is carried out. The results suggest that both the cold/hot temperature and water yield in Model A increases with the humidity and air flow rate rising. Seen in comparisons of Model A and Model B, it is found that, at an air humidity of 90% and air flow rate of 30 m 3 /h, the total water yield was increased by 43.4% and the corresponding value reached the maximum increment of 66.7% at an air humidity of 60% and air flow rate of 30 m 3 /h. These features demonstrate the advantage of Model A especially in low air humidity compared to Model B.

Suggested Citation

  • Wei He & Pengkun Yu & Zhongting Hu & Song Lv & Minghui Qin & Cairui Yu, 2019. "Experimental Study and Performance Analysis of a Portable Atmospheric Water Generator," Energies, MDPI, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:73-:d:300793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/73/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/73/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
    2. Narayan, G. Prakash & Sharqawy, Mostafa H. & Summers, Edward K. & Lienhard, John H. & Zubair, Syed M. & Antar, M.A., 2010. "The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1187-1201, May.
    3. Pandian Vasant & Utku Kose & Junzo Watada, 2017. "Metaheuristic Techniques in Enhancing the Efficiency and Performance of Thermo-Electric Cooling Devices," Energies, MDPI, vol. 10(11), pages 1-50, October.
    4. Yong-Joon Jun & Young-Hak Song & Kyung-Soon Park, 2017. "A Study on the Prediction of the Optimum Performance of a Small-Scale Desalination System Using Solar Heat Energy," Energies, MDPI, vol. 10(9), pages 1-16, August.
    5. Chai, Shaowei & Sun, Xiangyu & Zhao, Yao & Dai, Yanjun, 2019. "Experimental investigation on a fresh air dehumidification system using heat pump with desiccant coated heat exchanger," Energy, Elsevier, vol. 171(C), pages 306-314.
    6. Mattheus Goosen & Hacene Mahmoudi & Noreddine Ghaffour, 2010. "Water Desalination Using Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-20, August.
    7. Wang, Sicong & Wang, Shifeng, 2017. "Implications of improving energy efficiency for water resources," Energy, Elsevier, vol. 140(P1), pages 922-928.
    8. Christopher A. Scott & Zachary P. Sugg, 2015. "Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral Constraints, and Policy Imperatives," Energies, MDPI, vol. 8(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Riahi & Nor Azazi Zakaria & Nasir Md Noh & Mohd Zaki Mat Amin & Azman Mat Jusoh & Marini Mohamad Ideris & Mohd Zharif Muhammad & Mohd Asri Ramli & Mohd Remy Rozainy Mohd Arif Zainol & Syafiq Shaha, 2021. "Performance Investigation of 18 Thermoelectric Cooler (TEC) Units to Supply Continuous Daily Fresh Water from Malaysia’s Atmosphere," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    2. Mohammed Sanjid Thavalengal & Muhammad Ahmad Jamil & Muhammad Mehroz & Ben Bin Xu & Haseeb Yaqoob & Muhammad Sultan & Nida Imtiaz & Muhammad Wakil Shahzad, 2023. "Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    2. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    3. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    5. Suranjan Salins, Sampath & Kumar, Shiva & Shetty, Sawan & Raghavendra, R., 2024. "Theoretical and experimental study of the effect of biomass based organic packing wettability on the LDDS and its life cycle analysis," Renewable Energy, Elsevier, vol. 225(C).
    6. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Elena Helerea & Marius D. Calin & Cristian Musuroi, 2023. "Water Energy Nexus and Energy Transition—A Review," Energies, MDPI, vol. 16(4), pages 1-31, February.
    8. Pietrasanta, Ariana M. & Mussati, Sergio F. & Aguirre, Pio A. & Morosuk, Tatiana & Mussati, Miguel C., 2022. "Water-renewable energy Nexus: Optimization of geothermal energy-powered seawater desalination systems," Renewable Energy, Elsevier, vol. 196(C), pages 234-246.
    9. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    10. Josimar Reyes-Campos & Giner Alor-Hernández & Isaac Machorro-Cano & José Oscar Olmedo-Aguirre & José Luis Sánchez-Cervantes & Lisbeth Rodríguez-Mazahua, 2021. "Discovery of Resident Behavior Patterns Using Machine Learning Techniques and IoT Paradigm," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
    11. Antonio Colmenar-Santos & Elisabet Palomo-Torrejón & Enrique Rosales-Asensio & David Borge-Diez, 2018. "Measures to Remove Geothermal Energy Barriers in the European Union," Energies, MDPI, vol. 11(11), pages 1-29, November.
    12. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    13. Zhao, Linghao & Liu, Duo & Feng, Jianghe & Min, Erbiao & Li, Juan & Ling, Yifeng & Li, Hao & Zhao, Degang & Liu, Ruiheng & Sun, Rong, 2024. "Simultaneous optimization of cooling temperature difference and efficiency for multi-stage thermoelectric device," Applied Energy, Elsevier, vol. 373(C).
    14. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    15. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    16. Thiel, Gregory P. & McGovern, Ronan K. & Zubair, Syed M. & Lienhard V, John H., 2014. "Thermodynamic equipartition for increased second law efficiency," Applied Energy, Elsevier, vol. 118(C), pages 292-299.
    17. McGovern, Ronan K. & Thiel, Gregory P. & Prakash Narayan, G. & Zubair, Syed M. & Lienhard, John H., 2013. "Performance limits of zero and single extraction humidification-dehumidification desalination systems," Applied Energy, Elsevier, vol. 102(C), pages 1081-1090.
    18. Junjie Chen & Dong Han & Weifeng He & Majid Amidpour, 2021. "Establishing Surrogate Model to Predict the Optimal Thermodynamic and Economic Performance of a Packed Bed Humidifier via Multi-Objective Optimization," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    19. Yong-Joon Jun & Young-Hak Song & Dae-Young Kim & Kyung-Soon Park, 2017. "Analysis of the Optimum Solar Collector Installation Angle from the Viewpoint of Energy Use Patterns," Energies, MDPI, vol. 10(11), pages 1-18, November.
    20. Caulk, Robert A. & Tomac, Ingrid, 2017. "Reuse of abandoned oil and gas wells for geothermal energy production," Renewable Energy, Elsevier, vol. 112(C), pages 388-397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:73-:d:300793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.