IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1699-d155496.html
   My bibliography  Save this article

An Energy Optimization Strategy for Hybrid Power Ships under Load Uncertainty Based on Load Power Prediction and Improved NSGA-II Algorithm

Author

Listed:
  • Diju Gao

    (Key Laboratory Marine Technology and Control Engineering, Ministry of Communications, Shanghai Maritime University, Shanghai 201306, China)

  • Xuyang Wang

    (Key Laboratory Marine Technology and Control Engineering, Ministry of Communications, Shanghai Maritime University, Shanghai 201306, China)

  • Tianzhen Wang

    (Key Laboratory Marine Technology and Control Engineering, Ministry of Communications, Shanghai Maritime University, Shanghai 201306, China)

  • Yide Wang

    (Key Laboratory Marine Technology and Control Engineering, Ministry of Communications, Shanghai Maritime University, Shanghai 201306, China
    Institut d’Electronique et Telecommunications de Rennes, UMR CNRS 6164, Universite de Nantes, 44300 Nantes, France)

  • Xiaobin Xu

    (School of Automation, Hangzhou Dianzi University, Hangzhou 100084, China)

Abstract

In this paper, a hybrid ship powered by diesel generator sets and power batteries in series is considered. By analyzing the characteristics of hybrid ship cycle operating conditions, the load power of the hybrid ship under load uncertainty is firstly predicted. Then, considering the economy, emissions and continuous navigation time (endurance) of the hybrid ship, an energy optimization strategy based on the predicted load power is proposed to achieve the goal of minimum fuel consumption, minimum emissions and maximum endurance of ship operation. The experimental results show that, compared with the fuzzy logic rules based strategy, the fuel economy of the ship is increased by 9.6% and the ship’s endurance is increased by 24% for the proposed strategy.

Suggested Citation

  • Diju Gao & Xuyang Wang & Tianzhen Wang & Yide Wang & Xiaobin Xu, 2018. "An Energy Optimization Strategy for Hybrid Power Ships under Load Uncertainty Based on Load Power Prediction and Improved NSGA-II Algorithm," Energies, MDPI, vol. 11(7), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1699-:d:155496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nan Zhou & Nian Liu & Jianhua Zhang & Jinyong Lei, 2016. "Multi-Objective Optimal Sizing for Battery Storage of PV-Based Microgrid with Demand Response," Energies, MDPI, vol. 9(8), pages 1-24, July.
    2. Bigdeli, Nooshin, 2015. "Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 377-393.
    3. Lincun Fang & Shiyin Qin & Gang Xu & Tianli Li & Kemin Zhu, 2011. "Simultaneous Optimization for Hybrid Electric Vehicle Parameters Based on Multi-Objective Genetic Algorithms," Energies, MDPI, vol. 4(3), pages 1-13, March.
    4. Diju Gao & Wei Zhang & Aidi Shen & Yide Wang, 2017. "Parameter Design and Energy Control of the Power Train in a Hybrid Electric Boat," Energies, MDPI, vol. 10(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Peng & Hui Chen & Cong Guan, 2023. "Energy Management Optimization of Fuel Cell Hybrid Ship Based on Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-15, January.
    2. Nien-Che Yang & Yan-Lin Zeng & Tsai-Hsiang Chen, 2021. "Assessment of Voltage Imbalance Improvement and Power Loss Reduction in Residential Distribution Systems in Taiwan," Mathematics, MDPI, vol. 9(24), pages 1-17, December.
    3. Nivolianiti, Evaggelia & Karnavas, Yannis L. & Charpentier, Jean-Frederic, 2024. "Energy management of shipboard microgrids integrating energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Planakis, Nikolaos & Papalambrou, George & Kyrtatos, Nikolaos, 2022. "Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques," Applied Energy, Elsevier, vol. 307(C).
    5. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    3. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.
    4. Felipe Jiménez & Wilmar Cabrera-Montiel, 2014. "System for Road Vehicle Energy Optimization Using Real Time Road and Traffic Information," Energies, MDPI, vol. 7(6), pages 1-23, June.
    5. Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
    6. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    7. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    8. Farouk Odeim & Jürgen Roes & Angelika Heinzel, 2015. "Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System," Energies, MDPI, vol. 8(7), pages 1-26, June.
    9. Manish Mohanpurkar & Yusheng Luo & Danny Terlip & Fernando Dias & Kevin Harrison & Joshua Eichman & Rob Hovsapian & Jennifer Kurtz, 2017. "Electrolyzers Enhancing Flexibility in Electric Grids," Energies, MDPI, vol. 10(11), pages 1-17, November.
    10. Li, Feng & Yuan, Yupeng & Yan, Xinping & Malekian, Reza & Li, Zhixiong, 2018. "A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 177-185.
    11. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    12. Adham Kaloun & Stéphane Brisset & Maxime Ogier & Mariam Ahmed & Robin Vincent, 2021. "Comparison of Cycle Reduction and Model Reduction Strategies for the Design Optimization of Hybrid Powertrains on Driving Cycles," Energies, MDPI, vol. 14(4), pages 1-24, February.
    13. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2019. "A unified model to optimize configuration of battery energy storage systems with multiple types of batteries," Energy, Elsevier, vol. 176(C), pages 552-560.
    14. Hassam Muazzam & Mohamad Khairi Ishak & Athar Hanif & Ali Arshad Uppal & AI Bhatti & Nor Ashidi Mat Isa, 2022. "Virtual Sensor Using a Super Twisting Algorithm Based Uniform Robust Exact Differentiator for Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-18, February.
    15. Donato Morea & Lucilla Bittucci & Arturo Cafaro & Fabiomassimo Mango & Pina Murè, 2021. "Can the Current State Support Mechanisms Help the Growth of Renewable Energies in Wind Markets?," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    16. Idiano D’Adamo, 2018. "The Profitability of Residential Photovoltaic Systems. A New Scheme of Subsidies Based on the Price of CO 2 in a Developed PV Market," Social Sciences, MDPI, vol. 7(9), pages 1-21, August.
    17. Domenico Campisi & Simone Gitto & Donato Morea, 2018. "Shari’ah-Compliant Finance: A Possible Novel Paradigm for Green Economy Investments in Italy," Sustainability, MDPI, vol. 10(11), pages 1-12, October.
    18. Dadashi-Rad, Mohammad Hosein & Ghasemi-Marzbali, Ali & Ahangar, Roya Ahmadi, 2020. "Modeling and planning of smart buildings energy in power system considering demand response," Energy, Elsevier, vol. 213(C).
    19. Qi Wang & Ping Chang & Runqing Bai & Wenfei Liu & Jianfeng Dai & Yi Tang, 2019. "Mitigation Strategy for Duck Curve in High Photovoltaic Penetration Power System Using Concentrating Solar Power Station," Energies, MDPI, vol. 12(18), pages 1-16, September.
    20. Hun-Chul Seo, 2017. "New Configuration and Novel Reclosing Procedure of Distribution System for Utilization of BESS as UPS in Smart Grid," Sustainability, MDPI, vol. 9(4), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1699-:d:155496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.