IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v213y2020ics0360544220318776.html
   My bibliography  Save this article

Modeling and planning of smart buildings energy in power system considering demand response

Author

Listed:
  • Dadashi-Rad, Mohammad Hosein
  • Ghasemi-Marzbali, Ali
  • Ahangar, Roya Ahmadi

Abstract

The development of industry and the increasing of the energy demand in the today’s power system make it possible to maximize the potential of existing and renewable energy resources. On the other hand, using of these resources required efficient management and planning model, because without the adequate energy management, the power system cannot reach a high-performance model with maximum efficiency. Therefore, this paper first addresses the modeling of energy management in smart buildings having responsive/non-responsive devices and renewable photovoltaic resources. To manage the solar system employment, the KNX protocol is used. Also, the batteries are used in a way that they are charged at low power consumption and it will be as a generating unit during the peak-load time, therefore, the objective function is minimizing the power system loss and the related cost. Since the proposed model is nonlinear and has some complexity, the particle swarm algorithm (PSO) is used. To achieve the minimum losses, the best candidate buses are selected based on the proposed sensitivity analysis to manage the connected buildings. As a result, the function of the overall cost is based on the amount of energy produced and sold. Finally, the presented model is examined and evaluated on modified IEEE 30-bus test system based on the statistical analysis in different scenarios. Moreover, it is conclude from the planning that the operating cost significantly controls by the charge and discharge mechanism of the battery and the photovoltaic units.

Suggested Citation

  • Dadashi-Rad, Mohammad Hosein & Ghasemi-Marzbali, Ali & Ahangar, Roya Ahmadi, 2020. "Modeling and planning of smart buildings energy in power system considering demand response," Energy, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220318776
    DOI: 10.1016/j.energy.2020.118770
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220318776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alam, Muhammad Raisul & St-Hilaire, Marc & Kunz, Thomas, 2019. "Peer-to-peer energy trading among smart homes," Applied Energy, Elsevier, vol. 238(C), pages 1434-1443.
    2. Bigdeli, Nooshin, 2015. "Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 377-393.
    3. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Abdou, Ahmed Fathi, 2019. "Modified PSO algorithm for real-time energy management in grid-connected microgrids," Renewable Energy, Elsevier, vol. 136(C), pages 746-757.
    4. Gonçalves, Ivo & Gomes, Álvaro & Henggeler Antunes, Carlos, 2019. "Optimizing the management of smart home energy resources under different power cost scenarios," Applied Energy, Elsevier, vol. 242(C), pages 351-363.
    5. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    6. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Energy and uncertainty management through domestic demand response in the residential building," Energy, Elsevier, vol. 192(C).
    7. Davatgaran, Vahid & Saniei, Mohsen & Mortazavi, Seyed Saeidollah, 2019. "Smart distribution system management considering electrical and thermal demand response of energy hubs," Energy, Elsevier, vol. 169(C), pages 38-49.
    8. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    9. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    10. Kaygusuz, Asim, 2019. "Closed loop elastic demand control by dynamic energy pricing in smart grids," Energy, Elsevier, vol. 176(C), pages 596-603.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghasemi-Marzbali, Ali & Shafiei, Mohammad & Ahmadiahangar, Roya, 2023. "Day-ahead economical planning of multi-vector energy district considering demand response program," Applied Energy, Elsevier, vol. 332(C).
    2. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    3. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    4. Almorox, Javier & Voyant, Cyril & Bailek, Nadjem & Kuriqi, Alban & Arnaldo, J.A., 2021. "Total solar irradiance's effect on the performance of empirical models for estimating global solar radiation: An empirical-based review," Energy, Elsevier, vol. 236(C).
    5. Ahmadiahangar, Roya & Karami, Hossein & Husev, Oleksandr & Blinov, Andrei & Rosin, Argo & Jonaitis, Audrius & Sanjari, Mohammad Javad, 2022. "Analytical approach for maximizing self-consumption of nearly zero energy buildings- case study: Baltic region," Energy, Elsevier, vol. 238(PB).
    6. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    7. Valery V. Bezpalov & Sergey A. Lochan & Dmitry V. Fedyunin & Natalia A. Solopova & Denis S. Gorin, 2022. "RETRACTED ARTICLE: Electric power industry development in the Russian Federation considering the structural trends of the world economy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6372-6390, May.
    8. Bonomolo, Marina & Zizzo, Gaetano & Ferrari, Simone & Beccali, Marco & Guarino, Stefania, 2021. "Empirical BAC factors method application to two real case studies in South Italy," Energy, Elsevier, vol. 236(C).
    9. Hartani, Mohamed Amine & Rezk, Hegazy & Benhammou, Aissa & Hamouda, Messaoud & Abdelkhalek, Othmane & Mekhilef, Saad & Olabi, A.G., 2023. "Proposed frequency decoupling-based fuzzy logic control for power allocation and state-of-charge recovery of hybrid energy storage systems adopting multi-level energy management for multi-DC-microgrid," Energy, Elsevier, vol. 278(C).
    10. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Li & Gao, Yan & Zhu, Hongbo & Tao, Li, 2022. "Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement learning approach," Energy, Elsevier, vol. 239(PA).
    2. Li, Shenglin & Zhu, Jizhong & Chen, Ziyu & Luo, Tengyan, 2021. "Double-layer energy management system based on energy sharing cloud for virtual residential microgrid," Applied Energy, Elsevier, vol. 282(PA).
    3. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage," Applied Energy, Elsevier, vol. 298(C).
    4. Bing Wang & Qiran Cai & Zhenming Sun, 2020. "Determinants of Willingness to Participate in Urban Incentive-Based Energy Demand-Side Response: An Empirical Micro-Data Analysis," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
    5. Zhang, Heng & Zhang, Shenxi & Hu, Xiao & Cheng, Haozhong & Gu, Qingfa & Du, Mengke, 2022. "Parametric optimization-based peer-to-peer energy trading among commercial buildings considering multiple energy conversion," Applied Energy, Elsevier, vol. 306(PB).
    6. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Majdalani, Naim & Aelenei, Daniel & Lopes, Rui Amaral & Silva, Carlos Augusto Santo, 2020. "The potential of energy flexibility of space heating and cooling in Portugal," Utilities Policy, Elsevier, vol. 66(C).
    8. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    9. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    10. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    11. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    12. Ovidiu Ivanov & Samiran Chattopadhyay & Soumya Banerjee & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A Novel Algorithm with Multiple Consumer Demand Response Priorities in Residential Unbalanced LV Electricity Distribution Networks," Mathematics, MDPI, vol. 8(8), pages 1-24, July.
    13. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    14. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    15. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    16. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    17. Lee, Juyong & Cho, Youngsang, 2020. "Estimation of the usage fee for peer-to-peer electricity trading platform: The case of South Korea," Energy Policy, Elsevier, vol. 136(C).
    18. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    19. Mughees, Neelam & Jaffery, Mujtaba Hussain & Mughees, Anam & Ansari, Ejaz Ahmad & Mughees, Abdullah, 2023. "Reinforcement learning-based composite differential evolution for integrated demand response scheme in industrial microgrids," Applied Energy, Elsevier, vol. 342(C).
    20. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220318776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.