IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1567-d152586.html
   My bibliography  Save this article

Evaluation of the Reactive Power Support Capability and Associated Technical Costs of Photovoltaic Farms’ Operation

Author

Listed:
  • Luís F. N. Lourenço

    (Laboratory of Advanced Electric Grids (LGRID), Escola Politécnica, University of São Paulo, São Paulo 05508-010, Brazil
    Current address: Av. Prof. Luciano Gualberto, 158-Butantã, São Paulo 05508-900, Brazil.)

  • Renato M. Monaro

    (Laboratory of Advanced Electric Grids (LGRID), Escola Politécnica, University of São Paulo, São Paulo 05508-010, Brazil)

  • Maurício B. C. Salles

    (Laboratory of Advanced Electric Grids (LGRID), Escola Politécnica, University of São Paulo, São Paulo 05508-010, Brazil)

  • José R. Cardoso

    (Laboratory of Advanced Electric Grids (LGRID), Escola Politécnica, University of São Paulo, São Paulo 05508-010, Brazil)

  • Loïc Quéval

    (Group of Electrical Engineering—Paris (GeePs), UMR CNRS 8507, Centrale Supélec, Univ. Paris-Sud, Université Paris-Saclay, Sorbonne Université, 3 & 11 rue Joliot-Curie, 91192 Plateau de Moulon Gif-sur-Yvette CEDEX, France)

Abstract

The share of photovoltaic (PV) farms is increasing in the energy mix as power systems move away from conventional carbon-emitting sources. PV farms are equipped with an expensive power converter, which is, most of the time, used well bellow its rated capacity. This has led to proposals to use it to provide reactive power support to the grid. In this framework, this work presents a step-by-step methodology to obtain the reactive power support capability map and the associated technical costs of single- and two-stage PV farms during daytime operation. Results show that the use of two-stage PV farms can expand the reactive power support capability for low irradiance values in comparison to single-stage ones. Besides, despite losses being higher for two-stage PV farms, the technical cost in providing reactive power support is similar for both systems. Based on the obtained maps, it is demonstrated how the profits of a PV farm can be evaluated for the current ancillary services policy in Brazil. The proposed method is of interest to PV farm owners and grid operators to estimate the cost of providing reactive power support and to evaluate the economic feasibility in offering this ancillary service.

Suggested Citation

  • Luís F. N. Lourenço & Renato M. Monaro & Maurício B. C. Salles & José R. Cardoso & Loïc Quéval, 2018. "Evaluation of the Reactive Power Support Capability and Associated Technical Costs of Photovoltaic Farms’ Operation," Energies, MDPI, vol. 11(6), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1567-:d:152586
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location," Energies, MDPI, vol. 9(4), pages 1-13, March.
    2. Baohua Zhang & Weihao Hu & Peng Hou & Jin Tan & Mohsen Soltani & Zhe Chen, 2017. "Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm," Energies, MDPI, vol. 10(7), pages 1-17, June.
    3. Thomas, Robert J. & Mount, Timothy D. & Schuler, Richard & Schulze, William & Zimmerman, Ray & Alvarado, Fernando & Lesieutre, Bernard C. & Overholt, Philip N. & Eto, Joseph H., 2008. "Efficient and Reliable Reactive-Power Supply and Consumption: Insights from an Integrated Program of Engineering and Economic Research," The Electricity Journal, Elsevier, vol. 21(1), pages 70-81.
    4. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part I: Active-Reactive Optimal Power Flow with Reactive Power of Wind Stations," Energies, MDPI, vol. 9(3), pages 1-12, February.
    5. Liying Huang & Dongyuan Qiu & Fan Xie & Yanfeng Chen & Bo Zhang, 2017. "Modeling and Stability Analysis of a Single-Phase Two-Stage Grid-Connected Photovoltaic System," Energies, MDPI, vol. 10(12), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilfried van Sark, 2019. "Photovoltaic System Design and Performance," Energies, MDPI, vol. 12(10), pages 1-6, May.
    2. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    3. Angelo Lunardi & Luís F. Normandia Lourenço & Enkhtsetseg Munkhchuluun & Lasantha Meegahapola & Alfeu J. Sguarezi Filho, 2022. "Grid-Connected Power Converters: An Overview of Control Strategies for Renewable Energy," Energies, MDPI, vol. 15(11), pages 1-33, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfonso Risso & Alexandre Beluco & Rita De Cássia Marques Alves, 2018. "Complementarity Roses Evaluating Spatial Complementarity in Time between Energy Resources," Energies, MDPI, vol. 11(7), pages 1-14, July.
    2. David Sebastian Stock & Francesco Sala & Alberto Berizzi & Lutz Hofmann, 2018. "Optimal Control of Wind Farms for Coordinated TSO-DSO Reactive Power Management," Energies, MDPI, vol. 11(1), pages 1-25, January.
    3. Dharmesh Dabhi & Kartik Pandya & Joao Soares & Fernando Lezama & Zita Vale, 2022. "Cross Entropy Covariance Matrix Adaptation Evolution Strategy for Solving the Bi-Level Bidding Optimization Problem in Local Energy Markets," Energies, MDPI, vol. 15(13), pages 1-20, July.
    4. Xinshuo Zhang & Guangwen Ma & Weibin Huang & Shijun Chen & Shuai Zhang, 2018. "Short-Term Optimal Operation of a Wind-PV-Hydro Complementary Installation: Yalong River, Sichuan Province, China," Energies, MDPI, vol. 11(4), pages 1-19, April.
    5. Chang-Gi Min & Mun-Kyeom Kim, 2017. "Impact of the Complementarity between Variable Generation Resources and Load on the Flexibility of the Korean Power System," Energies, MDPI, vol. 10(11), pages 1-13, October.
    6. Sudhanshu Ranjan & Smriti Jaiswal & Abdul Latif & Dulal Chandra Das & Nidul Sinha & S. M. Suhail Hussain & Taha Selim Ustun, 2021. "Isolated and Interconnected Multi-Area Hybrid Power Systems: A Review on Control Strategies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    7. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    8. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location," Energies, MDPI, vol. 9(4), pages 1-13, March.
    9. Alessandro Ciocia & Angela Amato & Paolo Di Leo & Stefania Fichera & Gabriele Malgaroli & Filippo Spertino & Slavka Tzanova, 2021. "Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation," Energies, MDPI, vol. 14(6), pages 1-24, March.
    10. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Wang, Ni & Li, Jian & Hu, Weihao & Zhang, Baohua & Huang, Qi & Chen, Zhe, 2019. "Optimal reactive power dispatch of a full-scale converter based wind farm considering loss minimization," Renewable Energy, Elsevier, vol. 139(C), pages 292-301.
    12. Fan Xie & Zhenxiong Luo & Dongyuan Qiu & Bo Zhang & Yanfeng Chen & Liying Huang, 2019. "Study on a Simplified Structure of a Two-Stage Grid-Connected Photovoltaic System for Parameter Design Optimization," Energies, MDPI, vol. 12(11), pages 1-16, June.
    13. Wang, Ni & Li, Jian & Yu, Xiang & Zhou, Dao & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2020. "Optimal active and reactive power cooperative dispatch strategy of wind farm considering levelised production cost minimisation," Renewable Energy, Elsevier, vol. 148(C), pages 113-123.
    14. Chang Ye & Shihong Miao & Yaowang Li & Chao Li & Lixing Li, 2018. "Hierarchical Scheduling Scheme for AC/DC Hybrid Active Distribution Network Based on Multi-Stakeholders," Energies, MDPI, vol. 11(10), pages 1-16, October.
    15. Flavio Ciccarelli & Luigi Pio Di Noia & Renato Rizzo, 2018. "Integration of Photovoltaic Plants and Supercapacitors in Tramway Power Systems," Energies, MDPI, vol. 11(2), pages 1-14, February.
    16. Abdelali El Aroudi & Mohamed Al-Numay & Germain Garcia & Khalifa Al Hossani & Naji Al Sayari & Angel Cid-Pastor, 2018. "Analysis of Nonlinear Dynamics of a Quadratic Boost Converter Used for Maximum Power Point Tracking in a Grid-Interlinked PV System," Energies, MDPI, vol. 12(1), pages 1-23, December.
    17. Angelo Lunardi & Luís F. Normandia Lourenço & Enkhtsetseg Munkhchuluun & Lasantha Meegahapola & Alfeu J. Sguarezi Filho, 2022. "Grid-Connected Power Converters: An Overview of Control Strategies for Renewable Energy," Energies, MDPI, vol. 15(11), pages 1-33, June.
    18. Hesong Cui & Xueping Li & Gongping Wu & Yawei Song & Xiao Liu & Derong Luo, 2021. "MPC Based Coordinated Active and Reactive Power Control Strategy of DFIG Wind Farm with Distributed ESSs," Energies, MDPI, vol. 14(13), pages 1-19, June.
    19. Yoon-Geol Choi & Hyeon-Seok Lee & Bongkoo Kang & Su-Chang Lee & Sang-Jin Yoon, 2019. "Compact Single-Stage Micro-Inverter with Advanced Control Schemes for Photovoltaic Systems," Energies, MDPI, vol. 12(7), pages 1-15, March.
    20. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1567-:d:152586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.