IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p410-d131173.html
   My bibliography  Save this article

Integration of Photovoltaic Plants and Supercapacitors in Tramway Power Systems

Author

Listed:
  • Flavio Ciccarelli

    (University of Naples Federico II, 80125 Naples, Italy)

  • Luigi Pio Di Noia

    (Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80125 Naples, Italy)

  • Renato Rizzo

    (Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80125 Naples, Italy)

Abstract

The growing interest in the use of energy storage systems to improve the performance of tramways has prompted the development of control techniques and optimal storage devices, displacement, and sizing to obtain the maximum profit and reduce the total installation cost. Recently, the rapid diffusion of renewable energy generation from photovoltaic panels has also created a large interest in coupling renewable energy and storage units. This study analyzed the integration of a photovoltaic power plant, supercapacitor energy storage system, and railway power system. Random optimization was used to verify the feasibility of this integration in a real tramway electric system operating in the city of Naples, and the benefits and total cost of this integration were evaluated.

Suggested Citation

  • Flavio Ciccarelli & Luigi Pio Di Noia & Renato Rizzo, 2018. "Integration of Photovoltaic Plants and Supercapacitors in Tramway Power Systems," Energies, MDPI, vol. 11(2), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:410-:d:131173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fei Lin & Xuyang Li & Yajie Zhao & Zhongping Yang, 2016. "Control Strategies with Dynamic Threshold Adjustment for Supercapacitor Energy Storage System Considering the Train and Substation Characteristics in Urban Rail Transit," Energies, MDPI, vol. 9(4), pages 1-18, March.
    2. Luigi Piegari & Renato Rizzo & Ivan Spina & Pietro Tricoli, 2015. "Optimized Adaptive Perturb and Observe Maximum Power Point Tracking Control for Photovoltaic Generation," Energies, MDPI, vol. 8(5), pages 1-19, April.
    3. Shravanth Vasisht, M. & Vashista, G.A. & Srinivasan, J. & Ramasesha, Sheela K., 2017. "Rail coaches with rooftop solar photovoltaic systems: A feasibility study," Energy, Elsevier, vol. 118(C), pages 684-691.
    4. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location," Energies, MDPI, vol. 9(4), pages 1-13, March.
    5. Zhongping Yang & Zhihong Yang & Huan Xia & Fei Lin & Feiqin Zhu, 2017. "Supercapacitor State Based Control and Optimization for Multiple Energy Storage Devices Considering Current Balance in Urban Rail Transit," Energies, MDPI, vol. 10(4), pages 1-19, April.
    6. Renato Rizzo & Pietro Tricoli & Ivan Spina, 2012. "An Innovative Reconfigurable Integrated Converter Topology Suitable for Distributed Generation," Energies, MDPI, vol. 5(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Menicanti & Marco di Benedetto & Davide Marinelli & Fabio Crescimbini, 2022. "Recovery of Trains’ Braking Energy in a Railway Micro-Grid Devoted to Train plus Electric Vehicle Integrated Mobility," Energies, MDPI, vol. 15(4), pages 1-25, February.
    2. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    3. Shen, Xiaojun & Wei, Hongyang & Wei, Li, 2020. "Study of trackside photovoltaic power integration into the traction power system of suburban elevated urban rail transit line," Applied Energy, Elsevier, vol. 260(C).
    4. Włodzimierz Jefimowski & Zbigniew Drążek, 2022. "Distributed Module-Based Power Supply Enhancement System for 3 kV DC Traction," Energies, MDPI, vol. 16(1), pages 1-15, December.
    5. Gang Zhang & Zhongbei Tian & Huiqing Du & Zhigang Liu, 2018. "A Novel Hybrid DC Traction Power Supply System Integrating PV and Reversible Converters," Energies, MDPI, vol. 11(7), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Radaš & Ivan Župan & Viktor Šunde & Željko Ban, 2021. "Route Profile Dependent Tram Regenerative Braking Algorithm with Reduced Impact on the Supply Network," Energies, MDPI, vol. 14(9), pages 1-22, April.
    2. Pan, Deng & Zhao, Liting & Luo, Qing & Zhang, Chuansheng & Chen, Zejun, 2018. "Study on the performance improvement of urban rail transit system," Energy, Elsevier, vol. 161(C), pages 1154-1171.
    3. Maen Takruri & Maissa Farhat & Oscar Barambones & José Antonio Ramos-Hernanz & Mohammed Jawdat Turkieh & Mohammed Badawi & Hanin AlZoubi & Maswood Abdus Sakur, 2020. "Maximum Power Point Tracking of PV System Based on Machine Learning," Energies, MDPI, vol. 13(3), pages 1-14, February.
    4. Pan, Yu & Liu, Fengwei & Jiang, Ruijin & Tu, Zhiwen & Zuo, Lei, 2019. "Modeling and onboard test of an electromagnetic energy harvester for railway cars," Applied Energy, Elsevier, vol. 250(C), pages 568-581.
    5. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
    6. Abdelbasset Krama & Laid Zellouma & Boualaga Rabhi & Shady S. Refaat & Mansour Bouzidi, 2018. "Real-Time Implementation of High Performance Control Scheme for Grid-Tied PV System for Power Quality Enhancement Based on MPPC-SVM Optimized by PSO Algorithm," Energies, MDPI, vol. 11(12), pages 1-26, December.
    7. Yizhi Yan & Haolin Tang & Fan Wu & Rui Wang & Mu Pan, 2017. "One-Step Self-Assembly Synthesis α-Fe 2 O 3 with Carbon-Coated Nanoparticles for Stabilized and Enhanced Supercapacitors Electrode," Energies, MDPI, vol. 10(9), pages 1-13, August.
    8. Timur Yunusov & Maximilian J. Zangs & William Holderbaum, 2017. "Control of Energy Storage," Energies, MDPI, vol. 10(7), pages 1-5, July.
    9. Jian Zhao & Xuesong Zhou & Youjie Ma & Yiqi Liu, 2017. "Analysis of Dynamic Characteristic for Solar Arrays in Series and Global Maximum Power Point Tracking Based on Optimal Initial Value Incremental Conductance Strategy under Partially Shaded Conditions," Energies, MDPI, vol. 10(1), pages 1-23, January.
    10. Slimane Hadji & Jean-Paul Gaubert & Fateh Krim, 2018. "Real-Time Genetic Algorithms-Based MPPT: Study and Comparison (Theoretical an Experimental) with Conventional Methods," Energies, MDPI, vol. 11(2), pages 1-17, February.
    11. Stefano Menicanti & Marco di Benedetto & Davide Marinelli & Fabio Crescimbini, 2022. "Recovery of Trains’ Braking Energy in a Railway Micro-Grid Devoted to Train plus Electric Vehicle Integrated Mobility," Energies, MDPI, vol. 15(4), pages 1-25, February.
    12. Alfonso Risso & Alexandre Beluco & Rita De Cássia Marques Alves, 2018. "Complementarity Roses Evaluating Spatial Complementarity in Time between Energy Resources," Energies, MDPI, vol. 11(7), pages 1-14, July.
    13. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.
    14. Sipra, Abdullah Tariq & Azeem, Fawad & Memon, Zulfiqar Ali & Baig, Sobia & Jaffery, Mujtaba Hussain, 2024. "Design and assessment of energy management strategy on rail coaches using solar PV and battery storage to reduce diesel fuel consumption," Energy, Elsevier, vol. 288(C).
    15. Chendi Li & Yuanrui Chen & Dongbao Zhou & Junfeng Liu & Jun Zeng, 2016. "A High-Performance Adaptive Incremental Conductance MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 9(4), pages 1-17, April.
    16. Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev, 2023. "Design Optimization of a Synchronous Homopolar Motor with Ferrite Magnets for Subway Train," Mathematics, MDPI, vol. 11(3), pages 1-17, January.
    17. Ching-Ming Lai & Ming-Ji Yang & Shih-Kun Liang, 2014. "A Zero Input Current Ripple ZVS/ZCS Boost Converter with Boundary-Mode Control," Energies, MDPI, vol. 7(10), pages 1-18, October.
    18. David Sebastian Stock & Francesco Sala & Alberto Berizzi & Lutz Hofmann, 2018. "Optimal Control of Wind Farms for Coordinated TSO-DSO Reactive Power Management," Energies, MDPI, vol. 11(1), pages 1-25, January.
    19. Li, Qiyu & Zhao, Shengdun & Wang, Mengqi & Zou, Zhongyue & Wang, Bin & Chen, Qixu, 2017. "An improved perturbation and observation maximum power point tracking algorithm based on a PV module four-parameter model for higher efficiency," Applied Energy, Elsevier, vol. 195(C), pages 523-537.
    20. Hongye pan, & Jia, Changyuan & Li, Haobo & Zhou, Xianzheng & Fang, Zheng & Wu, Xiaoping & Zhang, Zutao, 2022. "A renewable energy harvesting wind barrier based on coaxial contrarotation for self-powered applications on railways," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:410-:d:131173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.