IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p61-d193177.html
   My bibliography  Save this article

Analysis of Nonlinear Dynamics of a Quadratic Boost Converter Used for Maximum Power Point Tracking in a Grid-Interlinked PV System

Author

Listed:
  • Abdelali El Aroudi

    (Departament d Enginyeria Electrònica, Universitat Rovira i Virgili, Elèctrica i Automàtica, Av. Paisos Catalans, No. 26, 43007 Tarragona, Spain)

  • Mohamed Al-Numay

    (Department of Electrical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Germain Garcia

    (Laboratoire d’Analuse et Architecture des Systèmes, Centre Nationale de Recherche Scientifique (LAAS-CNRS), Institut National des Sciences Appliquées (INSA), 7 Avenue du Colonel Roche, 31077 Toulouse, France)

  • Khalifa Al Hossani

    (Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE)

  • Naji Al Sayari

    (Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE)

  • Angel Cid-Pastor

    (Departament d Enginyeria Electrònica, Universitat Rovira i Virgili, Elèctrica i Automàtica, Av. Paisos Catalans, No. 26, 43007 Tarragona, Spain)

Abstract

In this paper, the nonlinear dynamics of a PV-fed high-voltage-gain single-switch quadratic boost converter loaded by a grid-interlinked DC-AC inverter is explored in its parameter space. The control of the input port of the converter is designed using a resistive control approach ensuring stability at the slow time-scale. However, time-domain simulations, performed on a full-order circuit-level switched model implemented in PSIM © software, show that at relatively high irradiance levels, the system may exhibit undesired subharmonic instabilities at the fast time-scale. A model of the system is derived, and a closed-form expression is used for locating the subharmonic instability boundary in terms of parameters of different nature. The theoretical results are in remarkable agreement with the numerical simulations and experimental measurements using a laboratory prototype. The modeling method proposed and the results obtained can help in guiding the design of power conditioning converters for solar PV systems, as well as other similar structures for energy conversion systems.

Suggested Citation

  • Abdelali El Aroudi & Mohamed Al-Numay & Germain Garcia & Khalifa Al Hossani & Naji Al Sayari & Angel Cid-Pastor, 2018. "Analysis of Nonlinear Dynamics of a Quadratic Boost Converter Used for Maximum Power Point Tracking in a Grid-Interlinked PV System," Energies, MDPI, vol. 12(1), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:61-:d:193177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/61/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/61/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Manuel Godinho Rodrigues & Radu Godina & Mousa Marzband & Edris Pouresmaeil, 2018. "Simulation and Comparison of Mathematical Models of PV Cells with Growing Levels of Complexity," Energies, MDPI, vol. 11(11), pages 1-21, October.
    2. Paula Andrea Ortiz Valencia & Carlos Andres Ramos-Paja, 2015. "Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 8(11), pages 1-25, November.
    3. Haidar Islam & Saad Mekhilef & Noraisyah Binti Mohamed Shah & Tey Kok Soon & Mehdi Seyedmahmousian & Ben Horan & Alex Stojcevski, 2018. "Performance Evaluation of Maximum Power Point Tracking Approaches and Photovoltaic Systems," Energies, MDPI, vol. 11(2), pages 1-24, February.
    4. Liying Huang & Dongyuan Qiu & Fan Xie & Yanfeng Chen & Bo Zhang, 2017. "Modeling and Stability Analysis of a Single-Phase Two-Stage Grid-Connected Photovoltaic System," Energies, MDPI, vol. 10(12), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun Shin & Sang Heon Chae & Eel-Hwan Kim, 2021. "Unbalanced Current Reduction Method of Microgrid Based on Power Conversion System Operation," Energies, MDPI, vol. 14(13), pages 1-16, June.
    2. Edwidge Raissa Mache Kengne & Alain Soup Tewa Kammogne & Thomas Tatietse Tamo & Ahmad Taher Azar & Ahmed Redha Mahlous & Saim Ahmed, 2023. "Photovoltaic Systems Based on Average Current Mode Control: Dynamical Analysis and Chaos Suppression by Using a Non-Adaptive Feedback Outer Loop Controller," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    3. Edwige Raissa Mache Kengne & Alain Soup Tewa Kammogne & Martin Siewe Siewe & Thomas Tatietse Tamo & Ahmad Taher Azar & Ahmed Redha Mahlous & Mohamed Tounsi & Zafar Iqbal Khan, 2023. "Bifurcation Analysis of a Photovoltaic Power Source Interfacing a Current-Mode-Controlled Boost Converter with Limited Current Sensor Bandwidth for Maximum Power Point Tracking," Sustainability, MDPI, vol. 15(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aranzazu D. Martin & Juan M. Cano & Reyes S. Herrera & Jesus R. Vazquez, 2019. "Wireless Sliding MPPT Control of Photovoltaic Systems in Distributed Generation Systems," Energies, MDPI, vol. 12(17), pages 1-16, August.
    2. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    3. Muhammad Nazri Rejab & Omar Mohd Faizan Marwah & Muhammad Akmal Johar & Mohamed Najib Ribuan, 2022. "Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    4. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    5. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    6. Azaioud, Hakim & Farnam, Arash & Knockaert, Jos & Vandevelde, Lieven & Desmet, Jan, 2024. "Efficiency optimisation and converterless PV integration by applying a dynamic voltage on an LVDC backbone," Applied Energy, Elsevier, vol. 356(C).
    7. Triet Nguyen-Van & Rikiya Abe & Kenji Tanaka, 2018. "MPPT and SPPT Control for PV-Connected Inverters Using Digital Adaptive Hysteresis Current Control," Energies, MDPI, vol. 11(8), pages 1-16, August.
    8. Thiago B. Murari & Aloisio S. Nascimento Filho & Marcelo A. Moret & Sergio Pitombo & Alex A. B. Santos, 2020. "Self-Affine Analysis of ENSO in Solar Radiation," Energies, MDPI, vol. 13(18), pages 1-17, September.
    9. Nahla E. Zakzouk & Ahmed K. Khamis & Ahmed K. Abdelsalam & Barry W. Williams, 2019. "Continuous-Input Continuous-Output Current Buck-Boost DC/DC Converters for Renewable Energy Applications: Modelling and Performance Assessment," Energies, MDPI, vol. 12(11), pages 1-27, June.
    10. Ehsan Norouzzadeh & Ahmad Ale Ahmad & Meysam Saeedian & Gholamreza Eini & Edris Pouresmaeil, 2019. "Design and Implementation of a New Algorithm for Enhancing MPPT Performance in Solar Cells," Energies, MDPI, vol. 12(3), pages 1-17, February.
    11. Saeed Danyali & Omid Aghaei & Mohammadamin Shirkhani & Rahmat Aazami & Jafar Tavoosi & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "A New Model Predictive Control Method for Buck-Boost Inverter-Based Photovoltaic Systems," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    12. Mehdi Seyedmahmoudian & Gokul Sidarth Thirunavukkarasu & Elmira Jamei & Tey Kok Soon & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2020. "A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    13. Carlos Olalla & Md. Nazmul Hasan & Chris Deline & Dragan Maksimović, 2018. "Mitigation of Hot-Spots in Photovoltaic Systems Using Distributed Power Electronics," Energies, MDPI, vol. 11(4), pages 1-16, March.
    14. Karim M. El-Sharawy & Hatem Y. Diab & Mahmoud O. Abdelsalam & Mostafa I. Marei, 2021. "A Unified Control Strategy of Distributed Generation for Grid-Connected and Islanded Operation Conditions Using an Artificial Neural Network," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
    15. Suliang Ma & Mingxuan Chen & Jianwen Wu & Wenlei Huo & Lian Huang, 2016. "Augmented Nonlinear Controller for Maximum Power-Point Tracking with Artificial Neural Network in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 9(12), pages 1-24, November.
    16. David J. Rincon & Maria A. Mantilla & Juan M. Rey & Miguel Garnica & Damien Guilbert, 2023. "An Overview of Flexible Current Control Strategies Applied to LVRT Capability for Grid-Connected Inverters," Energies, MDPI, vol. 16(3), pages 1-20, January.
    17. Kuei-Hsiang Chao & Muhammad Nursyam Rizal, 2021. "A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    18. Fan Xie & Zhenxiong Luo & Dongyuan Qiu & Bo Zhang & Yanfeng Chen & Liying Huang, 2019. "Study on a Simplified Structure of a Two-Stage Grid-Connected Photovoltaic System for Parameter Design Optimization," Energies, MDPI, vol. 12(11), pages 1-16, June.
    19. Martin Libra & Milan Daneček & Jan Lešetický & Vladislav Poulek & Jan Sedláček & Václav Beránek, 2019. "Monitoring of Defects of a Photovoltaic Power Plant Using a Drone," Energies, MDPI, vol. 12(5), pages 1-9, February.
    20. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:61-:d:193177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.