IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1466-d150888.html
   My bibliography  Save this article

Biogas from Fresh Spring and Summer Grass: Effect of the Harvesting Period

Author

Listed:
  • Alessandro Chiumenti

    (Department of Agricultural, Food, Animal and Environmental Sciences (DI4A), University of Udine, 33100 Udine, Italy)

  • Davide Boscaro

    (Department of Agroforesty and Landscape, University of Padua, 35020 Legnaro, Italy)

  • Francesco Da Borso

    (Department of Agricultural, Food, Animal and Environmental Sciences (DI4A), University of Udine, 33100 Udine, Italy)

  • Luigi Sartori

    (Department of Agroforesty and Landscape, University of Padua, 35020 Legnaro, Italy)

  • Andrea Pezzuolo

    (Department of Agroforesty and Landscape, University of Padua, 35020 Legnaro, Italy)

Abstract

Yard trimmings, landscape management and agricultural practices determine the collection of biomass currently destined mainly to the production of a valuable soil amendant by composting. While composting requires energy, especially for the turning/aeration phases and for air treatment (i.e., biofilters in the case of enclosed systems), anaerobic digestion represents an energy positive process that results in production of biogas and digestate, which can be used as fuel and fertilizer, respectively. The focus of the present research was the evaluation of biogas and methane potential of grass collected in two different periods of the year (spring and summer) from riverbanks located in Northern Italy. The conversion to biogas of feedstocks is greatly influenced by the composition of the organic matter, content of cellulose, and lignin in particular. The production of biomass per hectare and the consequent biogas production were also evaluated. The experimental tests were performed on both samples of fresh grass in laboratory scale batch reactors, characterized by 4.0 L of volume and operated in mesophilic conditions (38 °C), for 40 days per cycle. The anaerobic digestion process was performed on a mixture of inoculum and grass, characterized by inoculum:substrate VS (volatile solids) ratio equal to 2. The inoculum was represented by digestate from a full-scale anaerobic digestion plant fed with dairy cow manure. The results in terms of biogas production, biogas quality (CH 4 , CO 2 , H 2 S), and emissions from digestates (NH 3 , CO 2 and CH 4 ) are presented in the paper. Total solids (TS), volatile solids (VS), pH, volatile fatty acids (VFA), alkalinity, acidity vs. alkalinity ratio, fibers (cellulose, lignin), and total Kjieldahl nitrogen (TKN) were determined both on input and output of the process. The biogas yield obtained from grass resulted higher than expected, quite similar to the yield obtained from energy crops, with Biomethane Potential (BMP) of 340.2 NL·kg −1 VS and of 307.7 NL·kg −1 VS, respectively, for spring and summer grass. Biogas quality was slightly lower for summer grass, perhaps in relation to the higher content of fibers (lignin). Alternatively, the yield of grass per surface was significantly different between spring and summer with the highest production in the summer. In fact, the results revealed a methane yield of 263 Nm 3 ·ha −1 and of 1181 Nm 3 ·ha −1 , respectively for spring and summer grass.

Suggested Citation

  • Alessandro Chiumenti & Davide Boscaro & Francesco Da Borso & Luigi Sartori & Andrea Pezzuolo, 2018. "Biogas from Fresh Spring and Summer Grass: Effect of the Harvesting Period," Energies, MDPI, vol. 11(6), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1466-:d:150888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1466/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1466/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsapekos, P. & Kougias, P.G. & Egelund, H. & Larsen, U. & Pedersen, J. & Trénel, P. & Angelidaki, I., 2017. "Mechanical pretreatment at harvesting increases the bioenergy output from marginal land grasses," Renewable Energy, Elsevier, vol. 111(C), pages 914-921.
    2. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    3. Nizami, A.S. & Orozco, A. & Groom, E. & Dieterich, B. & Murphy, J.D., 2012. "How much gas can we get from grass?," Applied Energy, Elsevier, vol. 92(C), pages 783-790.
    4. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk & Grzegorz Zając & Martin J. Wassen, 2023. "Grass from Road Verges as a Substrate for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-23, June.
    2. Fei Wang & Mengfu Pei & Ling Qiu & Yiqing Yao & Congguang Zhang & Hong Qiang, 2019. "Performance of Anaerobic Digestion of Chicken Manure Under Gradually Elevated Organic Loading Rates," IJERPH, MDPI, vol. 16(12), pages 1-17, June.
    3. Carlos S. Ciria & Marina Sanz & Juan Carrasco & Pilar Ciria, 2019. "Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain," Sustainability, MDPI, vol. 11(7), pages 1-17, March.
    4. Stolarski, Mariusz J. & Peni, Dumitru & Dębowski, Marcin, 2022. "Biogas potential of cup plant and willow-leaf sunflower biomass," Energy, Elsevier, vol. 255(C).
    5. Spyridon Achinas & Gerrit Jan Willem Euverink, 2019. "Feasibility Study of Biogas Production from Hardly Degradable Material in Co-Inoculated Bioreactor," Energies, MDPI, vol. 12(6), pages 1-11, March.
    6. Spyridon Achinas & Gerrit Jan Willem Euverink, 2019. "Effect of Combined Inoculation on Biogas Production from Hardly Degradable Material," Energies, MDPI, vol. 12(2), pages 1-13, January.
    7. Spyridon Achinas & Yu Li & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "Biogas Potential from the Anaerobic Digestion of Potato Peels: Process Performance and Kinetics Evaluation," Energies, MDPI, vol. 12(12), pages 1-16, June.
    8. Moritz von Cossel & Andrea Bauerle & Meike Boob & Ulrich Thumm & Martin Elsaesser & Iris Lewandowski, 2019. "The Performance of Mesotrophic Arrhenatheretum Grassland under Different Cutting Frequency Regimes for Biomass Production in Southwest Germany," Agriculture, MDPI, vol. 9(9), pages 1-17, September.
    9. Alessandro Chiumenti & Andrea Pezzuolo & Davide Boscaro & Francesco da Borso, 2019. "Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield," Energies, MDPI, vol. 12(17), pages 1-11, August.
    10. Józef Szlachta & Hubert Prask & Małgorzata Fugol & Adam Luberański, 2018. "Effect of Mechanical Pre-Treatment of the Agricultural Substrates on Yield of Biogas and Kinetics of Anaerobic Digestion," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    11. Aaron E. Brown & James M. Hammerton & Miller Alonso Camargo-Valero & Andrew B. Ross, 2022. "Integration of Hydrothermal Carbonisation and Anaerobic Digestion for the Energy Valorisation of Grass," Energies, MDPI, vol. 15(10), pages 1-21, May.
    12. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    13. Jing Hou & Bo Hou, 2019. "Farmers’ Adoption of Low-Carbon Agriculture in China: An Extended Theory of the Planned Behavior Model," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    14. Giovanni Ferrari & Andrea Pezzuolo & Abdul-Sattar Nizami & Francesco Marinello, 2020. "Bibliometric Analysis of Trends in Biomass for Bioenergy Research," Energies, MDPI, vol. 13(14), pages 1-21, July.
    15. Arkadiusz Dyjakon & Jan den Boer & Antoni Szumny & Emilia den Boer, 2019. "Local Energy Use of Biomass from Apple Orchards—An LCA Study," Sustainability, MDPI, vol. 11(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Chiumenti & Andrea Pezzuolo & Davide Boscaro & Francesco da Borso, 2019. "Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield," Energies, MDPI, vol. 12(17), pages 1-11, August.
    2. Giovanni Ferrari & Andrea Pezzuolo & Abdul-Sattar Nizami & Francesco Marinello, 2020. "Bibliometric Analysis of Trends in Biomass for Bioenergy Research," Energies, MDPI, vol. 13(14), pages 1-21, July.
    3. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    4. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    5. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    6. Józef Szlachta & Hubert Prask & Małgorzata Fugol & Adam Luberański, 2018. "Effect of Mechanical Pre-Treatment of the Agricultural Substrates on Yield of Biogas and Kinetics of Anaerobic Digestion," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    7. Peng, Xiaowei & Nges, Ivo Achu & Liu, Jing, 2016. "Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes," Renewable Energy, Elsevier, vol. 85(C), pages 12-18.
    8. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N. & Ogundola, M.A. & Umar, U., 2014. "Sustainable potential of bioenergy resources for distributed power generation development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 361-370.
    9. Hamelin, Lorie & Møller, Henrik Bjarne & Jørgensen, Uffe, 2021. "Harnessing the full potential of biomethane towards tomorrow's bioeconomy: A national case study coupling sustainable agricultural intensification, emerging biogas technologies and energy system analy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Sica, Daniela & Esposito, Benedetta & Supino, Stefania & Malandrino, Ornella & Sessa, Maria Rosaria, 2023. "Biogas-based systems: An opportunity towards a post-fossil and circular economy perspective in Italy," Energy Policy, Elsevier, vol. 182(C).
    11. Tsapekos, P. & Khoshnevisan, B. & Alvarado-Morales, M. & Symeonidis, A. & Kougias, P.G. & Angelidaki, Irini, 2019. "Environmental impacts of biogas production from grass: Role of co-digestion and pretreatment at harvesting time," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Pantaleo, Antonio & Gennaro, Bernardo De & Shah, Nilay, 2013. "Assessment of optimal size of anaerobic co-digestion plants: An application to cattle farms in the province of Bari (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 57-70.
    13. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    14. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    15. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    16. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    17. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    18. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    19. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    20. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1466-:d:150888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.