IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p742-d490436.html
   My bibliography  Save this article

Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland

Author

Listed:
  • Grzegorz Ślusarz

    (Institute of Economics and Finance, University of Rzeszów, ul. M. Ćwiklińskiej 2, 35-601 Rzeszów, Poland)

  • Barbara Gołębiewska

    (Institute of Economics and Finance, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland)

  • Marek Cierpiał-Wolan

    (Institute of Economics and Finance, University of Rzeszów, ul. M. Ćwiklińskiej 2, 35-601 Rzeszów, Poland)

  • Jarosław Gołębiewski

    (Institute of Economics and Finance, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland)

  • Dariusz Twaróg

    (Statistical Office in Rzeszów, Jana III Sobieskiego 10, 35-001 Rzeszów, Poland)

  • Sebastian Wójcik

    (Institute of Mathematics, University of Rzeszów, ul. Pigonia 1, 35-959 Rzeszów, Poland)

Abstract

Energy obtained from renewable sources is an important element of the sustainable development strategy of the European Union and its member states. The aim of this research is, therefore, to assess the potential and use of renewable energy sources and their effectiveness from the regional perspective in Poland. The research covered the years 2012 and 2018. The diversification of production and potential of renewable energy sources was defined on the basis of biogas and biomass. Calculations made using the data envelopment analysis (DEA) method showed that, in 2012, only three voivodeships achieved the highest efficiency in terms of the use of biogas and biomass resources; in 2018, this number increased to four. Comparing the effective units in 2012 and 2018, it can be seen that their efficiency frontier moved upwards by 56% in terms of biogas and 21% in terms of to biomass. Despite a large relative increase in the production of heat from biogas by 99% compared to the production of heat from biomass by 38%, the efficiency frontier for biogas did not change considerably. It was found that the resources of solid biomass are used far more intensively than the resources of biogas. However, in the case of biogas, a significant increase in the utilization of the production potential was observed: from 3.3% in 2012 to 6.4% in 2018, whereas in the same years, the utilization of solid biomass production potential remained at the same level (15.3% in 2012, 15.4% in 2018). It was also observed that, at the level of voivodeships, the utilization of biogas and biomass production potential is negatively correlated with the size of this potential. The combined potential of solid biomass and biogas can cover the demand of each of the studied regions in Poland in terms of thermal energy. The coverage ranges from 104% to 1402%. The results show that when comparing biomass and biogas, the production of both electricity and heat was dominated by solid biomass. Its high share occurred especially in voivodeships characterized by a high share of forest area and a low potential for biogas production (Lubuskie Voivodeship, Zachodniopomorskie Voivodeship).

Suggested Citation

  • Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:742-:d:490436
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abolhosseini, Shahrouz & Heshmati, Almas´ & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," Working Paper Series in Economics and Institutions of Innovation 374, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    2. Adam Wąs & Piotr Sulewski & Vitaliy Krupin & Nazariy Popadynets & Agata Malak-Rawlikowska & Magdalena Szymańska & Iryna Skorokhod & Marcin Wysokiński, 2020. "The Potential of Agricultural Biogas Production in Ukraine—Impact on GHG Emissions and Energy Production," Energies, MDPI, vol. 13(21), pages 1-20, November.
    3. Park, BeomJun & Hur, Jin, 2018. "Spatial prediction of renewable energy resources for reinforcing and expanding power grids," Energy, Elsevier, vol. 164(C), pages 757-772.
    4. Mark Howells & Sebastian Hermann & Manuel Welsch & Morgan Bazilian & Rebecka Segerström & Thomas Alfstad & Dolf Gielen & Holger Rogner & Guenther Fischer & Harrij van Velthuizen & David Wiberg & Charl, 2013. "Integrated analysis of climate change, land-use, energy and water strategies," Nature Climate Change, Nature, vol. 3(7), pages 621-626, July.
    5. Yang, Yanli & Zhang, Peidong & Li, Guangquan, 2012. "Regional differentiation of biogas industrial development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6686-6693.
    6. Gradziuk, Piotr & Gradziuk, Barbara, 2020. "Renewable Energy Sources As A Development Opportunity For Peripheral Areas," Economic and Regional Studies (Studia Ekonomiczne i Regionalne), John Paul II University of Applied Sciences in Biala Podlaska, vol. 13(2), June.
    7. Olanrewaju, O.A. & Jimoh, A.A. & Kholopane, P.A., 2012. "Integrated IDA–ANN–DEA for assessment and optimization of energy consumption in industrial sectors," Energy, Elsevier, vol. 46(1), pages 629-635.
    8. Kamlesh Kumar, 2020. "Social, Economic, and Environmental Impacts of Renewable Energy Resources," Chapters, in: Kenneth Eloghene Okedu & Ahmed Tahour & Abdel Ghani Aissaoui (ed.), Wind Solar Hybrid Renewable Energy System, IntechOpen.
    9. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    10. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Moreda, Iván López, 2016. "The potential of biogas production in Uruguay," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1580-1591.
    13. Ignaciuk, A. & Vohringer, F. & Ruijs, A. & van Ierland, E.C., 2006. "Competition between biomass and food production in the presence of energy policies: a partial equilibrium analysis," Energy Policy, Elsevier, vol. 34(10), pages 1127-1138, July.
    14. Borhanazad, H. & Mekhilef, S. & Saidur, R. & Boroumandjazi, G., 2013. "Potential application of renewable energy for rural electrification in Malaysia," Renewable Energy, Elsevier, vol. 59(C), pages 210-219.
    15. Carrosio, Giovanni, 2013. "Energy production from biogas in the Italian countryside: Policies and organizational models," Energy Policy, Elsevier, vol. 63(C), pages 3-9.
    16. Poggi, Francesca & Firmino, Ana & Amado, Miguel, 2018. "Planning renewable energy in rural areas: Impacts on occupation and land use," Energy, Elsevier, vol. 155(C), pages 630-640.
    17. Mahmure Övül Arıoğlu Akan & Ayşe Ayçim Selam & Seniye Ümit Oktay Fırat & Merve Er Kara & Semih Özel, 2015. "A Comparative Analysis of Renewable Energy Use and Policies: Global and Turkish Perspectives," Sustainability, MDPI, vol. 7(12), pages 1-29, December.
    18. Wang, Qiang & Kwan, Mei-Po & Fan, Jie & Zhou, Kan & Wang, Ya-Fei, 2019. "A study on the spatial distribution of the renewable energy industries in China and their driving factors," Renewable Energy, Elsevier, vol. 139(C), pages 161-175.
    19. Yin, Dongxue & Liu, Wei & Zhai, Ningning & Wang, Yandong & Ren, Chengjie & Yang, Gaihe, 2017. "Regional differentiation of rural household biogas development and related driving factors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1008-1018.
    20. Tao Xu & Jianxin You & Hui Li & Luning Shao, 2020. "Energy Efficiency Evaluation Based on Data Envelopment Analysis: A Literature Review," Energies, MDPI, vol. 13(14), pages 1-20, July.
    21. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    22. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    23. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    24. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    25. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    26. Sutherland, Lee-Ann & Peter, Sarah & Zagata, Lukas, 2015. "Conceptualising multi-regime interactions: The role of the agriculture sector in renewable energy transitions," Research Policy, Elsevier, vol. 44(8), pages 1543-1554.
    27. Harmsen, Robert & Wesselink, Bart & Eichhammer, Wolfgang & Worrell, Ernst, 2011. "The unrecognized contribution of renewable energy to Europe's energy savings target," Energy Policy, Elsevier, vol. 39(6), pages 3425-3433, June.
    28. Scarlat, Nicolae & Fahl, Fernando & Dallemand, Jean-François & Monforti, Fabio & Motola, Vicenzo, 2018. "A spatial analysis of biogas potential from manure in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 915-930.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Cierpiał-Wolan & Bogdan Wierzbiński & Dariusz Twaróg, 2021. "The Use of the Local and Regional Potential in Building Energy Independence—Polish and Ukraine Case Study," Energies, MDPI, vol. 14(19), pages 1-21, September.
    2. Ludwik Wicki & Kaspars Naglis-Liepa & Tadeusz Filipiak & Andrzej Parzonko & Aleksandra Wicka, 2022. "Is the Production of Agricultural Biogas Environmentally Friendly? Does the Structure of Consumption of First- and Second-Generation Raw Materials in Latvia and Poland Matter?," Energies, MDPI, vol. 15(15), pages 1-16, August.
    3. Aneta Bełdycka-Bórawska & Piotr Bórawski & Lisa Holden & Tomasz Rokicki & Bogdan Klepacki, 2022. "Factors Shaping Performance of Polish Biodiesel Producers Participating in the Farm Accountancy Data Network in the Context of the Common Agricultural Policy of the European Union," Energies, MDPI, vol. 15(19), pages 1-25, October.
    4. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Dariusz Twaróg & Jarosław Gołębiewski & Sebastian Wójcik, 2021. "The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland," Energies, MDPI, vol. 14(13), pages 1-21, July.
    5. Ping Han & Ziyu Zhou, 2023. "The Harmonious Relationship between Energy Utilization Efficiency and Industrial Structure Development under Carbon Emission Constraints: Measurement, Quantification, and Identification," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    6. Małgorzata Stec & Mariola Grzebyk, 2022. "Statistical Analysis of the Level of Development of Renewable Energy Sources in the Countries of the European Union," Energies, MDPI, vol. 15(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sedef E. Kara & Mustapha D. Ibrahim & Sahand Daneshvar, 2021. "Dual Efficiency and Productivity Analysis of Renewable Energy Alternatives of OECD Countries," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    2. Kiril Simeonovski & Tamara Kaftandzieva & Gregory Brock, 2021. "Energy Efficiency Management across EU Countries: A DEA Approach," Energies, MDPI, vol. 14(9), pages 1-19, May.
    3. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.
    4. Filip Fidanoski & Kiril Simeonovski & Violeta Cvetkoska, 2021. "Energy Efficiency in OECD Countries: A DEA Approach," Energies, MDPI, vol. 14(4), pages 1-21, February.
    5. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    6. Mohd Chachuli, Fairuz Suzana & Ahmad Ludin, Norasikin & Md Jedi, Muhamad Alias & Hamid, Norul Hisham, 2021. "Transition of renewable energy policies in Malaysia: Benchmarking with data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Chinese, D. & Patrizio, P. & Nardin, G., 2014. "Effects of changes in Italian bioenergy promotion schemes for agricultural biogas projects: Insights from a regional optimization model," Energy Policy, Elsevier, vol. 75(C), pages 189-205.
    8. Habib Zare Ahmadabadi & Fatemeh Zamzam & Ali Emrouznejad & Alireza Naser Sadrabadi & Ali Morovati Sharifabadi, 2024. "A modified distance friction minimization model with optimistic–pessimistic target orientation for OECD sustainable performance measurement," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23113-23149, September.
    9. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2019. "Factors affecting the efficiency of wind power in the European Union countries," Energy Policy, Elsevier, vol. 132(C), pages 965-977.
    10. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    11. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    12. Mohd Chachuli, Fairuz Suzana & Mat, Sohif & Ludin, Norasikin Ahmad & Sopian, Kamaruzzaman, 2021. "Performance evaluation of renewable energy R&D activities in Malaysia," Renewable Energy, Elsevier, vol. 163(C), pages 544-560.
    13. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Dariusz Twaróg & Jarosław Gołębiewski & Sebastian Wójcik, 2021. "The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland," Energies, MDPI, vol. 14(13), pages 1-21, July.
    14. Svetlana Ratner & Andrey Lychev & Aleksei Rozhnov & Igor Lobanov, 2021. "Efficiency Evaluation of Regional Environmental Management Systems in Russia Using Data Envelopment Analysis," Mathematics, MDPI, vol. 9(18), pages 1-21, September.
    15. Şenol, Halil & Ali Dereli̇, Mehmet & Özbilgin, Ferdi, 2021. "Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Aneta Karasek & Barbara Fura & Magdalena Zajączkowska, 2023. "Assessment of Energy Efficiency in the European Union Countries in 2013 and 2020," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    17. Laura Calzada-Infante & Ana María López-Narbona & Alberto Núñez-Elvira & Javier Orozco-Messana, 2020. "Assessing the Efficiency of Sustainable Cities Using an Empirical Approach," Sustainability, MDPI, vol. 12(7), pages 1-13, March.
    18. Lin, Shuguang & Shi, Hai-Liu & Wang, Ying-Ming, 2022. "An integrated slacks-based super-efficiency measure in the presence of nonpositive data," Omega, Elsevier, vol. 111(C).
    19. Keskin, Burak, 2021. "An efficiency analysis on social prosperity: OPEC case under network DEA slack-based measure approach," Energy, Elsevier, vol. 231(C).
    20. George Halkos & Kleoniki Natalia Petrou, 2019. "Analysing the Energy Efficiency of EU Member States: The Potential of Energy Recovery from Waste in the Circular Economy," Energies, MDPI, vol. 12(19), pages 1-32, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:742-:d:490436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.